Details

Electrochemical Engineering


Electrochemical Engineering


1. Aufl.

von: Thomas F. Fuller, John N. Harb

103,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 15.02.2018
ISBN/EAN: 9781119446583
Sprache: englisch
Anzahl Seiten: 448

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A Comprehensive Reference for Electrochemical Engineering Theory and Application</b></p> <p>From chemical and electronics manufacturing, to hybrid vehicles, energy storage, and beyond, electrochemical engineering touches many industries—any many lives—every day. As energy conservation becomes of central importance, so too does the science that helps us reduce consumption, reduce waste, and lessen our impact on the planet. <i>Electrochemical Engineering</i> provides a reference for scientists and engineers working with electrochemical processes, and a rigorous, thorough text for graduate students and upper-division undergraduates.</p> <p>Merging theoretical concepts with widespread application, this book is designed to provide critical knowledge in a real-world context. Beginning with the fundamental principles underpinning the field, the discussion moves into industrial and manufacturing processes that blend central ideas to provide an advanced understanding while explaining observable results. Fully-worked illustrations simplify complex processes, and end-of chapter questions help reinforce essential knowledge.</p> <p>With in-depth coverage of both the practical and theoretical, this book is both a thorough introduction to and a useful reference for the field. Rigorous in depth, yet grounded in relevance, <i>Electrochemical Engineering</i>: </p> <ul> <li>Introduces basic principles from the standpoint of practical application</li> <li>Explores the kinetics of electrochemical reactions with discussion on thermodynamics, reaction fundamentals, and transport</li> <li>Covers battery and fuel cell characteristics, mechanisms, and system design</li> <li>Delves into the design and mechanics of hybrid and electric vehicles, including regenerative braking, start-stop hybrids, and fuel cell systems</li> <li>Examines electrodeposition, redox-flow batteries, electrolysis, regenerative fuel cells, semiconductors, and other applications of electrochemical engineering principles</li> </ul> <p>Overlapping chemical engineering, chemistry, material science, mechanical engineering, and electrical engineering, electrochemical engineering covers a diverse array of phenomena explained by some of the important scientific discoveries of our time. <i>Electrochemical Engineering</i> provides the critical understanding required to work effectively with these processes as they become increasingly central to global sustainability.</p>
<p>Preface ix</p> <p>List of Symbols xi</p> <p>About the Companion Website xv</p> <p><b>1. Introduction and Basic Principles 1<br /></b><i>Charles W. Tobias</i></p> <p>1.1 Electrochemical Cells 1</p> <p>1.2 Characteristics of Electrochemical Reactions 2</p> <p>1.3 Importance of Electrochemical Systems 4</p> <p>1.4 Scientific Units, Constants, Conventions 5</p> <p>1.5 Faraday’s Law 6</p> <p>1.6 Faradaic Efficiency 8</p> <p>1.7 Current Density 9</p> <p>1.8 Potential and Ohm’s Law 9</p> <p>1.9 Electrochemical Systems: Example 10</p> <p>Closure 13</p> <p>Further Reading 13</p> <p>Problems 13</p> <p><b>2. Cell Potential and Thermodynamics 15<br /></b><i>Wendell Mitchell Latimer</i></p> <p>2.1 Electrochemical Reactions 15</p> <p>2.2 Cell Potential 15</p> <p>2.3 Expression for Cell Potential 17</p> <p>2.4 Standard Potentials 18</p> <p>2.5 Effect of Temperature on Standard Potential 21</p> <p>2.6 Simplified Activity Correction 22</p> <p>2.7 Use of the Cell Potential 24</p> <p>2.8 Equilibrium Constants 25</p> <p>2.9 Pourbaix Diagrams 25</p> <p>2.10 Cells with a Liquid Junction 27</p> <p>2.11 Reference Electrodes 27</p> <p>2.12 Equilibrium at Electrode Interface 30</p> <p>2.13 Potential in Solution Due to Charge: Debye–Hückel Theory 31</p> <p>2.14 Activities and Activity Coefficients 33</p> <p>2.15 Estimation of Activity Coefficients 35</p> <p>Closure 36</p> <p>Further Reading 36</p> <p>Problems 36</p> <p><b>3. Electrochemical Kinetics 41<br /></b><i>Alexander Naumovich Frumkin</i></p> <p>3.1 Double Layer 41</p> <p>3.2 Impact of Potential on Reaction Rate 42</p> <p>3.3 Use of the Butler–Volmer Kinetic Expression 46</p> <p>3.4 Reaction Fundamentals 49</p> <p>3.5 Simplified Forms of the Butler–Volmer Equation 50</p> <p>3.6 Direct Fitting of the Butler–Volmer Equation 52</p> <p>3.7 The Influence of Mass Transfer on the Reaction Rate 54</p> <p>3.8 Use of Kinetic Expressions in Full Cells 55</p> <p>3.9 Current Efficiency 58</p> <p>Closure 58</p> <p>Further Reading 59</p> <p>Problems 59</p> <p><b>4. Transport 63<br /></b><i>Carl Wagner</i></p> <p>4.1 Fick’s Law 63</p> <p>4.2 Nernst–Planck Equation 63</p> <p>4.3 Conservation of Material 65</p> <p>4.4 Transference Numbers, Mobilities, and Migration 71</p> <p>4.5 Convective Mass Transfer 75</p> <p>4.6 Concentration Overpotential 79</p> <p>4.7 Current Distribution 81</p> <p>4.8 Membrane Transport 86</p> <p>Closure 87</p> <p>Further Reading 88</p> <p>Problems 88</p> <p><b>5. Electrode Structures and Configurations 93<br /></b><i>John Newman</i></p> <p>5.1 Mathematical Description of Porous Electrodes 94</p> <p>5.2 Characterization of Porous Electrodes 96</p> <p>5.3 Impact of Porous Electrode on Transport 97</p> <p>5.4 Current Distributions in Porous Electrodes 98</p> <p>5.5 The Gas–Liquid Interface in Porous Electrodes 102</p> <p>5.6 Three-Phase Electrodes 103</p> <p>5.7 Electrodes with Flow 105<br /><br />Closure 108</p> <p>Further Reading 108</p> <p>Problems 108</p> <p><b>6. Electroanalytical Techniques and Analysis of Electrochemical Systems 113<br /></b><i>Jaroslav Heyrovský</i></p> <p>6.1 Electrochemical Cells, Instrumentation, and Some Practical Issues 113</p> <p>6.2 Overview 115</p> <p>6.3 Step Change in Potential or Current for a Semi-Infinite Planar Electrode in a Stagnant Electrolyte 116</p> <p>6.4 Electrode Kinetics and Double-Layer Charging 118</p> <p>6.5 Cyclic Voltammetry 122</p> <p>6.6 Stripping Analyses 127</p> <p>6.7 Electrochemical Impedance 129</p> <p>6.8 Rotating Disk Electrodes 136</p> <p>6.9 iR Compensation 139</p> <p>6.10 Microelectrodes 141</p> <p>Closure 145</p> <p>Further Reading 145</p> <p>Problems 145</p> <p><b>7. Battery Fundamentals 151<br /></b><i>John B. Goodenough</i></p> <p>7.1 Components of a Cell 151</p> <p>7.2 Classification of Batteries and Cell Chemistries 152</p> <p>7.3 Theoretical Capacity and State of Charge 156</p> <p>7.4 Cell Characteristics and Electrochemical Performance 158</p> <p>7.5 Ragone Plots 163</p> <p>7.6 Heat Generation 164</p> <p>7.7 Efficiency of Secondary Cells 166</p> <p>7.8 Charge Retention and Self-Discharge 167</p> <p>7.9 Capacity Fade in Secondary Cells 168</p> <p>Closure 169</p> <p>Further Reading 169</p> <p>Problems 169</p> <p><b>8. Battery Applications: Cell and Battery Pack Design 175<br /></b><i>Esther Sans Takeuchi</i></p> <p>8.1 Introduction to Battery Design 175</p> <p>8.2 Battery Layout Using a Specific Cell Design 176</p> <p>8.3 Scaling of Cells to Adjust Capacity 178</p> <p>8.4 Electrode and Cell Design to Achieve Rate Capability 181</p> <p>8.5 Cell Construction 183</p> <p>8.6 Charging of Batteries 184</p> <p>8.7 Use of Resistance to Characterize Battery Peformance 185</p> <p>8.8 Battery Management 186</p> <p>8.9 Thermal Management Systems 188</p> <p>8.10 Mechanical Considerations 190</p> <p>Closure 191</p> <p>Further Reading 191</p> <p>Problems 191</p> <p><b>9. Fuel-Cell Fundamentals 195<br /></b><i>Supramaniam Srinivasan</i></p> <p>9.1 Introduction 195</p> <p>9.2 Types of Fuel Cells 197</p> <p>9.3 Current–Voltage Characteristics and Polarizations 198</p> <p>9.4 Effect of Operating Conditions and Maximum Power 202</p> <p>9.5 Electrode Structure 205</p> <p>9.6 Proton-Exchange Membrane (PEM) Fuel Cells 206</p> <p>9.7 Solid Oxide Fuel Cells 211<br /><br />Closure 215</p> <p>Further Reading 215</p> <p>Problems 216</p> <p><b>10. Fuel-Cell Stack and System Design 223<br /></b><i>Francis Thomas Bacon</i></p> <p>10.1 Introduction and Overview of Systems Analysis 223</p> <p>10.2 Basic Stack Design Concepts 226</p> <p>10.3 Cell Stack Configurations 228</p> <p>10.4 Basic Construction and Components 229</p> <p>10.5 Utilization of Oxidant and Fuel 231</p> <p>10.6 Flow-Field Design 235</p> <p>10.7 Water and Thermal Management 238</p> <p>10.8 Structural–Mechanical Considerations 241</p> <p>10.9 Case Study 245</p> <p>Closure 247</p> <p>Further Reading 247</p> <p>Problems 247</p> <p><b>11. Electrochemical Double-Layer Capacitors 251<br /></b><i>Brian Evans Conway</i></p> <p>11.1 Capacitor Introduction 251</p> <p>11.2 Electrical Double-Layer Capacitance 253</p> <p>11.3 Current–Voltage Relationship for Capacitors 259</p> <p>11.4 Porous EDLC Electrodes 261</p> <p>11.5 Impedance Analysis of EDLCs 263</p> <p>11.6 Full Cell EDLC Analysis 266</p> <p>11.7 Power and Energy Capabilities 267</p> <p>11.8 Cell Design, Practical Operation, and Electrochemical Capacitor Performance 269</p> <p>11.9 Pseudo-Capacitance 271</p> <p>Closure 273</p> <p>Further Reading 273</p> <p>Problems 273</p> <p><b>12. Energy Storage and Conversion for Hybrid and Electrical Vehicles 277<br /></b><i>Ferdinand Porsche</i></p> <p>12.1 Why Electric and Hybrid-Electric Systems? 277</p> <p>12.2 Driving Schedules and Power Demand in Vehicles 279</p> <p>12.3 Regenerative Braking 281</p> <p>12.4 Battery Electrical Vehicle 282</p> <p>12.5 Hybrid Vehicle Architectures 284</p> <p>12.6 Start–Stop Hybrid 285</p> <p>12.7 Batteries for Full-Hybrid Electric Vehicles 287</p> <p>12.8 Fuel-Cell Hybrid Systems for Vehicles 291</p> <p>Closure 293</p> <p>Further Reading 294</p> <p>Problems 294</p> <p>Appendix: Primer on Vehicle Dynamics 295</p> <p><b>13. Electrodeposition 299<br /></b><i>Richard C. Alkire</i></p> <p>13.1 Overview 299</p> <p>13.2 Faraday’s Law and Deposit Thickness 300</p> <p>13.3 Electrodeposition Fundamentals 300</p> <p>13.4 Formation of Stable Nuclei 303</p> <p>13.5 Nucleation Rates 305</p> <p>13.6 Growth of Nuclei 308</p> <p>13.7 Deposit Morphology 310</p> <p>13.8 Additives 311</p> <p>13.9 Impact of Current Distribution 312</p> <p>13.10 Impact of Side Reactions 314</p> <p>13.11 Resistive Substrates 316<br /><br />Closure 319</p> <p>Further Reading 319</p> <p>Problems 319</p> <p><b>14. Industrial Electrolysis, Electrochemical Reactors, and Redox-Flow Batteries 323<br /></b><i>Fumio Hine</i></p> <p>14.1 Overview of Industrial Electrolysis 323</p> <p>14.2 Performance Measures 324</p> <p>14.3 Voltage Losses and the Polarization Curve 328</p> <p>14.4 Design of Electrochemical Reactors for Industrial Applications 331</p> <p>14.5 Examples of Industrial Electrolytic Processes 337</p> <p>14.6 Thermal Management and Cell Operation 341</p> <p>14.7 Electrolytic Processes for a Sustainable Future 343</p> <p>14.8 Redox-Flow Batteries 348</p> <p>Closure 350</p> <p>Further Reading 350</p> <p>Problems 350</p> <p><b>15. Semiconductor Electrodes and Photoelectrochemical Cells 355<br /></b><i>Heinz Gerischer</i></p> <p>15.1 Semiconductor Basics 355</p> <p>15.2 Energy Scales 358</p> <p>15.3 Semiconductor–Electrolyte Interface 360</p> <p>15.4 Current Flow in the Dark 363</p> <p>15.5 Light Absorption 366</p> <p>15.6 Photoelectrochemical Effects 368</p> <p>15.7 Open-Circuit Voltage for Illuminated Electrodes 369</p> <p>15.8 Photo-Electrochemical Cells 370</p> <p>Closure 375</p> <p>Further Reading 375</p> <p>Problems 375</p> <p><b>16. Corrosion 379<br /></b><i>Ulick Richardson Evans</i></p> <p>16.1 Corrosion Fundamentals 379</p> <p>16.2 Thermodynamics of Corrosion Systems 380</p> <p>16.3 Corrosion Rate for Uniform Corrosion 383</p> <p>16.4 Localized Corrosion 390</p> <p>16.5 Corrosion Protection 394</p> <p>Closure 399</p> <p>Further Reading 399</p> <p>Problems 399</p> <p>Appendix A: Electrochemical Reactions and Standard Potentials 403</p> <p>Appendix B: Fundamental Constants 404</p> <p>Appendix C: Thermodynamic Data 405</p> <p>Appendix D: Mechanics of Materials 408</p> <p>Index 413</p>
<p><b>THOMAS F. FULLER</b> is Professor of Chemical & Biomolecular Engineering at Georgia Institute of Technology and a Technical Editor for the Journal of the Electrochemical Society, responsible for fuel cells, electrolyzers, and energy conversion. <p><b>JOHN N. HARB</b> is Professor of Chemical Engineering in the Ira A. Fulton College of Engineering and Technology at Brigham Young University.
<p><b>A Comprehensive Reference for Electrochemical Engineering Theory and Application</b> <p>From chemical and electronics manufacturing, to hybrid vehicles, energy storage, and beyond, electrochemical engineering touches many industries—and many lives—every day. As energy conservation becomes of central importance, so too does the science that helps us reduce consumption, reduce waste, and lessen our impact on the planet. <i>Electrochemical Engineering</i> provides a reference for scientists and engineers working with electrochemical processes, and a rigorous, thorough text for graduate students and upper-division undergraduates. <p>Merging theoretical concepts with widespread application, this book is designed to provide critical knowledge in a real-world context. Beginning with the fundamental principles underpinning the field, the discussion moves into industrial and manufacturing processes that blend central ideas to provide an advanced understanding while explaining observable results. Fully worked illustrations simplify complex processes, and end-of-chapter questions help reinforce essential knowledge. <p>With in-depth coverage of both the practical and theoretical, this book is a thorough introduction to and a useful reference for the field. Rigorous in depth, yet grounded in relevance, <i>Electrochemical Engineering</i>: <ul> <li>Introduces basic principles from the standpoint of practical application</li> <li>Describes the influence of thermodynamics, kinetics and transport on electrochemical reaction rates</li> <li>Covers battery and fuel cell characteristics, mechanisms, and system design</li> <li>Explores the design and mechanics of hybrid and electric vehicles, including regenerative braking, start-stop hybrids, and fuel cell systems</li> <li>Examines electrodeposition, redox-flow batteries, electrolysis, regenerative fuel cells, semiconductors, and other applications of electrochemical engineering principles</li> </ul> <p>Overlapping chemical engineering, chemistry, material science, mechanical engineering, and electrical engineering, <i>Electrochemical Engineering</i> covers a diverse array of phenomena explained by some of the important scientific discoveries of our time. <i>Electrochemical Engineering</i> also provides the critical understanding required to work effectively with electrochemical processes as they become increasingly central to global sustainability.

Diese Produkte könnten Sie auch interessieren:

N4-Macrocyclic Metal Complexes
N4-Macrocyclic Metal Complexes
von: J.H. Zagal, Fethi Bedioui, J.P. Dodelet
PDF ebook
213,99 €
Modern Aspects of Electrochemistry 39
Modern Aspects of Electrochemistry 39
von: Constantinos G. Vayenas, Ralph E. White
PDF ebook
96,29 €