Details

Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria


Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria


1. Aufl.

von: Frans J. de Bruijn

489,99 €

Verlag: Wiley-Blackwell
Format: PDF
Veröffentl.: 01.07.2016
ISBN/EAN: 9781119004820
Sprache: englisch
Anzahl Seiten: 1472

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Bacteria in various habitats are subject to continuously changing environmental conditions, such as nutrient deprivation, heat and cold stress, UV radiation, oxidative stress, dessication, acid stress, nitrosative stress, cell envelope stress, heavy metal exposure, osmotic stress, and others. In order to survive, they have to respond to these conditions by adapting their physiology through sometimes drastic changes in gene expression. In addition they may adapt by changing their morphology, forming biofilms, fruiting bodies or spores, filaments, Viable But Not Culturable (VBNC) cells or moving away from stress compounds via chemotaxis.  Changes in gene expression constitute the main component of the bacterial response to stress and environmental changes, and involve a myriad of different mechanisms, including (alternative) sigma factors, bi- or tri-component regulatory systems, small non-coding RNA’s, chaperones, CHRIS-Cas systems, DNA repair, toxin-antitoxin systems, the stringent response, efflux pumps, alarmones, and modulation of the cell envelope or membranes, to name a few. Many regulatory elements are conserved in different bacteria; however there are endless variations on the theme and novel elements of gene regulation in bacteria inhabiting particular environments are constantly being discovered.  Especially in (pathogenic) bacteria colonizing the human body a plethora of bacterial responses to innate stresses such as pH, reactive nitrogen and oxygen species and antibiotic stress are being described. An attempt is made to not only cover model systems but give a broad overview of the stress-responsive regulatory systems in a variety of bacteria, including medically important bacteria, where elucidation of certain aspects of these systems could lead to treatment strategies of the pathogens. Many of the regulatory systems being uncovered are specific, but there is also considerable “cross-talk” between different circuits. </p> <p><i>Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria</i> is a comprehensive two-volume work bringing together both review and original research articles on key topics in stress and environmental control of gene expression in bacteria.</p> <p><b>Volume One</b> contains key overview chapters, as well as content on one/two/three component regulatory systems and stress responses, sigma factors and stress responses, small non-coding RNAs and stress responses, toxin-antitoxin systems and stress responses, stringent response to stress, responses to UV irradiation, SOS and double stranded systems repair systems and stress, adaptation to both oxidative and osmotic stress, and desiccation tolerance and drought stress.</p> <b>Volume Two</b> covers heat shock responses, chaperonins and stress, cold shock responses, adaptation to acid stress, nitrosative stress, and envelope stress, as well as iron homeostasis, metal resistance, quorum sensing, chemotaxis and biofilm formation, and viable but not culturable (VBNC) cells.<br /><br />Covering the full breadth of current stress and environmental control of gene expression studies and expanding it towards future advances in the field, these two volumes are a one-stop reference for (non) medical molecular geneticists interested in gene regulation under stress.
<p><b>VOLUME 1</b></p> <p>Preface, xiii</p> <p>Acknowledgements, xiv</p> <p>List of contributors, xv</p> <p>1 Introduction, 1<br /><i>Frans J. de Bruijn</i></p> <p><b>Section 2: Key overview chapters, 3</b></p> <p>2.1 Stress-induced changes in transcript stability, 5<br /><i>Dvora Biran and Eliora Z. Ron</i></p> <p>2.2 StressChip for monitoring microbial stress response in the environment, 9<br /><i>Joy D. Van Nostrand, Aifen Zhou and Jizhong Zhou</i></p> <p>2.3 A revolutionary paradigm of bacterial genome regulation, 23<br /><i>Akira Ishihama</i></p> <p>2.4 Role of changes in σ70-driven transcription in adaptation of E. coli to conditions of stress or starvation, 37<br /><i>Umender K. Sharma</i></p> <p>2.5 The distribution and spatial organization of RNA polymerase in Escherichia coli: growth rate regulation and stress responses, 48<br /><i>Ding Jun Jin, Cedric Cagliero, Jerome Izard, Carmen Mata Martin, and Yan Ning Zhou</i></p> <p>2.6 The ECF classification: a phylogenetic reflection of the regulatory diversity in the extracytoplasmic function σ factor protein family, 64<br /><i>Daniela Pinto andThorsten Mascher</i></p> <p>2.7 Toxin–antitoxin systems in bacteria and archaea, 97<br /><i>Yoshihiro Yamaguchi and Masayori Inouye</i></p> <p>2.8 Bacterial sRNAs: regulation in stress, 108<br /><i>Marimuthu Citartan, Carsten A. Raabe, Chee-Hock Hoe, Timofey S. Rozhdestvensky, andThean-Hock Tang</i></p> <p>2.9 Bacterial stress responses as determinants of antimicrobial resistance, 115<br /><i>Michael Fruci and Keith Poole</i></p> <p>2.10 Transposable elements: a toolkit for stress and environmental adaptation in bacteria, 137<br /><i>Anna Ullastres, Miriam Merenciano, Lain Guio, and Josefa González</i></p> <p>2.11 CRISPR–Cas system: a new paradigm for bacterial stress response through genome rearrangement, 146<br /><i>Joseph A. Hakim, Hyunmin Koo, Jan D. van Elsas, Jack T. Trevors, and Asim K. Bej</i></p> <p>2.12 The copper metallome in prokaryotic cells, 161<br /><i>Christopher Rensing, Hend A. Alwathnani, and Sylvia F. McDevitt</i></p> <p>2.13 Ribonucleases as modulators of bacterial stress response, 174<br /><i>Cátia Bárria, Vánia Pobre, Afonso M. Bravo, and Cecília M. Arraiano</i></p> <p>2.14 Double-strand-break repair, mutagenesis, and stress, 185<br /><i>Elizabeth Rogers, Raul Correa, Brittany Barreto, María Angélica Bravo Núñez, P.J. Minnick, Diana Vera Cruz, Jun Xia, P.J. Hastings, and Susan M. Rosenberg</i></p> <p>2.15 Sigma factor competition in Escherichia coli: kinetic and thermodynamic perspectives, 196<br /><i>Kuldeepkumar Ramnaresh Gupta and Dipankar Chatterji</i></p> <p>2.16 Iron homeostasis and iron–sulfur cluster assembly in Escherichia coli, 203<br /><i>Huangen Ding</i></p> <p>2.17 Mechanisms underlying the antimicrobial capacity of metals, 215<br /><i>Joe A. Lemire and Raymond J. Turner</i></p> <p>2.18 Acyl-homoserine lactone-based quorum sensing in members of the marine bacterial Roseobacter clade: complex cell-to-cell communication controls multiple physiologies, 225<br /><i>Alison Buchan, April Mitchell,W. Nathan Cude, and Shawn Campagna</i></p> <p>2.19 Native and synthetic gene regulation to nitrogen limitation stress, 234<br /><i>J örg Schumacher</i></p> <p><b>Section 3: One-, two-, and three-component regulatory systems and stress responses, 247</b></p> <p>3.1 Two-component systems that control the expression of aromatic hydrocarbon degradation pathways, 249\<br /><i>Tino Krell</i></p> <p>3.2 Cross-talk of global regulators in Streptomyces, 257<br /><i>Juan F. Martín, Fernando Santos-Beneit, Alberto Sola-Landa, and Paloma Liras</i></p> <p>3.3 NO–H-NOX-regulated two-component signaling, 268<br /><i>Dhruv P. Arora, Sandhya Muralidharan, and Elizabeth M. Boon</i></p> <p>3.4 The two-component CheY system in the chemotaxis of Sinorhizobium meliloti, 277<br /><i>Martin Haslbeck</i></p> <p>3.5 Stimulus perception by histidine kinases, 282<br /><i>Hannah Schramke, Yang Wang, Ralf Heermann, and Kirsten Jung</i></p> <p><b>Section 4: Sigma factors and stress responses, 301</b></p> <p>4.1 The extracytoplasmic function sigma factor EcfO protects Bacteroides fragilis against oxidative stress, 303<br /><i>Ivan C. Ndamukong, Samantha Palethorpe, Michael Betteken, and C. Jeffrey Smith</i></p> <p>4.2 Regulation of energy metabolism by the extracytoplasmic function (ECF) σ factors of Arcobacter butzleri, 311<br />Irati Martinez-Malaxetxebarria, Rudy Muts, Linda van Dijk, Craig T. Parker, William G. Miller, Steven Huynh,Wim <i>Gaastra, Jos P.M. van Putten, Aurora Fernandez-Astorga, and Marc M.S.M Wösten</i></p> <p>4.3 Extracytoplasmic function sigma factors and stress responses in Corynebacterium pseudotuberculosis, 321<br /><i>Thiago L.P. Castro, Nubia Seyffert, Anne C. Pinto, Artur Silva, Vasco Azevedo, and Luis G.C. Pacheco</i></p> <p>4.4 The complex roles and regulation of stress response σ factors in Streptomyces coelicolor, 328<br /><i>Jan Kormanec, Beatrica Sevcikova, Renata Novakova, Dagmar Homerova, Bronislava Rezuchova, and Erik Mingyar</i></p> <p>4.5 Proteolytic activation of extra cytoplasmic function (ECF) σ factors, 344<br /><i>JessicaL. Hastie and Craig D. Ellermeier</i></p> <p>4.6 The ECF family sigma factor σH in Corynebacterium glutamicum controls the thiol-oxidative stress response, 352<br /><i>Tobias Busche and Jörn Kalinowski</i></p> <p>4.7 Posttranslational regulation of antisigma factors of RpoE: a comparison between the Escherichia coli and Pseudomonas aeruginosa systems, 361<br /><i>Sundar Pandey, Kyle L. Martins, and Kalai Mathee</i></p> <p><b>Section 5: Small noncoding RNAs and stress responses, 369</b></p> <p>5.1 Bacterial small RNAs in mixed regulatory circuits, 371<br /><i>Jonathan Jagodnik, DenisThieffry, and Maude Guillier</i></p> <p>5.2 Role of small RNAs in Pseudomonas aeruginosa virulence and adaptation, 383<br /><i>Hansi Kumari, Deepak Balasubramanian, and Kalai Mathee</i></p> <p>5.3 Physiological effects of posttranscriptional regulation by the small RNA SgrS during metabolic stress in<br />Escherichia coli, 393<br /><i>Gregory R. Richards</i></p> <p>5.4 Three rpoS-activating small RNAs in pathways contributing to acid resistance of Escherichia coli, 402<br /><i>Geunu Bak, Kook Han, Daun Kim, Kwang-sun Kim, and Younghoon Lee</i></p> <p>5.5 Thermal stress noncoding RNAs in prokaryotes and eukaryotes: a comparative approach, 412<br /><i>Mercedes de la Fuente and José Luis Martínez-Guitarte</i></p> <p><b>Section 6: Toxin-antitoxin systems and stress responses, 423</b></p> <p>6.1 Epigenetics mediated by restriction modification systems, 425<br /><i>Iwona Mruk and Ichizo Kobayashi</i></p> <p>6.2 Toxin–antitoxin systems as regulators of bacterial fitness and virulence, 437<br /><i>Brittany A. Fleming and Matthew A. Mulvey</i></p> <p>6.3 Mechanisms of stress-activated persister formation in Escherichia coli, 446<br /><i>Stephanie M. Amato and Mark P. Brynildsen</i></p> <p>6.4 Identification and characterization of type II toxin–antitoxin systems in the opportunistic pathogen<br />Acinetobacter baumannii, 454<br /><i>Edita Sûziedéliené, Milda Jurénaité, and Julija Armalyté</i></p> <p>6.5 Transcriptional control of toxin–antitoxin expression: keeping toxins under wraps until the time is right, 463<br /><i>Barbara Kℷedzierska and Finbarr Hayes</i></p> <p>6.6 Opposite effects of GraT toxin on stress tolerance of Pseudomonas putida, 473<br /><i>Rita Hõrak and Hedvig Tamman</i></p> <p><b>Section 7: Stringent response to stress, 479</b></p> <p>7.1 Preferential cellular accumulation of ppGpp or pppGpp in Escherichia coli, 481<br /><i>K. Potrykus and M. Cashel</i></p> <p>7.2 Global Rsh-dependent transcription profile of Brucella suis during stringent response unravels adaptation to nutrient starvation and cross-talk with other stress responses, 489<br /><i>Stephan Köhler, Nabil Hanna, Safia Ouahrani-Bettache, Kenneth L. Drake, L. Garry Adams, and Alessandra Occhialini</i></p> <p>7.3 The stringent response and antioxidant defences in Pseudomonas aeruginosa, 500<br /><i>Gowthami Sampathkumar, Malika Khakimova, Tevy Chan, and Dao Nguyen</i></p> <p>7.4 Molecular basis of the stringent response in Vibrio cholerae, 507<br /><i>Shreya Dasgupta, Bhabatosh Das, Pallabi Basu, and Rupak K. Bhadra</i></p> <p><b>Section 8: Responses to UV irradiation, 517</b></p> <p>8.1 UV stress-responsive genes associated with ICE SXT/R391 group, 519<br /><i>Patricia Armshaw and J. Tony Pembroke</i></p> <p>8.2 Altered outer membrane proteins in response to UVC radiation in Vibrio parahaemolyticus and Vibrio alginolyticus, 528<br /><i>Fethi Ben Abdallah</i></p> <p>8.3 Ultraviolet-B radiation effects on the community, physiology, and mineralization of magnetotactic bacteria, 532<br /><i>Yingzhao Wang and Yongxin Pan</i></p> <p>8.4 Nucleotide excision repair system and gene expression in Mycobacterium smegmatis, 545<br /><i>Angelina Cordone</i></p> <p><b>Section 9: SOS and double stranded repair systems and stress, 551</b></p> <p>9.1 The SOS response modulates bacterial pathogenesis, 553<br /><i>Darja ??Zgur Bertok</i></p> <p>9.2 RNAP secondary-channel interactors in Escherichia coli: makers and breakers of genome stability, 561<br /><i>Priya Sivaramakrishnan and Christophe Herman</i></p> <p>9.3 How a large gene network couples mutagenic DNA break repair to stress in Escherichia coli, 570<br /><i>Elizabeth Rogers, P.J. Hastings, María Angélica Bravo Núñez, and Susan M. Rosenberg</i></p> <p>9.4 Double-strand DNA break repair in mycobacteria, 577<br /><i>Richa Gupta and Michael S. Glickman</i></p> <p><b>Section 10: Adaptation to oxidative stress, 587</b></p> <p>10.1 Peroxide-sensing transcriptional regulators in bacteria, 58<br /><i>James M. Dubbs and Skorn Mongkolsuk</i></p> <p>10.2 Regulation of oxidative stress–related genes implicated in the establishment of opportunistic infections by Bacteroides fragilis, 603<br /><i>Felipe Lopes Teixeira, Regina Maria Cavalcanti Pilotto Domingues, and Leandro Araujo Lobo</i></p> <p>10.3 Investigation into oxidative stress response of Shewanella oneidensis reveals a distinct mechanism, 609<br /><i>Jie Yuan, Fen Wan, and Haichun Gao</i></p> <p>10.4 An omics view on the response to singlet oxygen, 619<br /><i>Bork A. Berghoff and Gabriele Klug</i></p> <p>10.5 Regulators of oxidative stress response genes in Escherichia coli and their conservation in bacteria, 632<br /><i>Herb E. Schellhorn, Mohammad Mohiuddin, Sarah M. Hammond, and Steven Botts</i></p> <p>10.6 Hydrogen peroxide resistance in Bifidobacterium animalis subsp. lactis and Bifidobacterium longum, 638<br /><i>Taylor S. Oberg and Jeff R. Broadbent</i></p> <p><b>Section 11: Adaptation to osmotic stress, 647</b></p> <p>11.1 Interstrain variation in the physiological and transcriptional responses of Pseudomonas syringae to osmotic stress, 649<br /><i>Gwyn A. Beattie, Chiliang Chen, Lindsey Nielsen, and Brian C. Freeman</i></p> <p>11.2 Management of osmotic stress by Bacillus subtilis: genetics and physiology, 657<br /><i>Tamara Hoffmann and Erhard Bremer</i></p> <p>11.3 Hyperosmotic response of Streptococcus mutans: from microscopic physiology to transcriptomic profile, 677<br /><i>Lu Wang and Xin Xu</i></p> <p>11.4 Defective ribosome maturation or function makes Escherichia coli cells salt-resistant, 687<br /><i>Hyouta Himeno, Takefusa Tarusawa, Shion Ito, and Simon Goto</i></p> <p><b>Section 12: Dessication tolerance and drought stress, 693</b></p> <p>12.1 Consequences of elevated salt concentrations on expression profiles in the rhizobium S. meliloti 1021 likely involved in heat and desiccation stress, 695<br /><i>Jan A.C. Vriezen, Caroline M. Finn, and Klaus Nüsslein</i></p> <p>12.2 Genes involved in the formation of desiccationresistant cysts in Azotobacter vinelandii, 709<br /><i>Guadalupe Espín</i></p> <p>12.3 Osmotic and desiccation tolerance in Escherichia coli O157:H7 and Salmonella enterica requires rpoS (σ38), 716<br /><i>Zach Pratt, Megan Shiroda, Andrew J. Stasic, Josh Lensmire, and C.W. Kaspar</i></p> <p>12.4 Desiccation of Salmonella enterica induces cross-tolerance to other stresses, 725<br /><i>Shlomo Sela (Saldinger) and Chellaiah Edward Raja</i></p> <p>Index, i1</p> <p><b>VOLUME 2</b></p> <p>Preface, xiii</p> <p>Acknowledgements, xiv</p> <p>List of contributors, xv</p> <p><b>Section 13: Heat shock responses, 737</b></p> <p>13.1 Heat shock response in bacteria with large genomes: lessons from rhizobia, 739<br /><i>Ana Alexandre and Solange Oliveira</i></p> <p>13.2 Small heat shock proteins in bacteria, 747<br /><i>Martin Haslbeck</i></p> <p>13.3 Transcriptome analysis of bacterial response to heat shock using next-generation sequencing, 754<br /><i>Kok-Gan Chan</i></p> <p>13.4 Comparative analyses of bacterial transcriptome reorganisation in response to temperature increase, 757<br /><i>Bei-Wen Ying and Tetsuya Yomo</i></p> <p>13.5 Participation of Ser–Thr protein kinases in regulation of heat stress responses in Synechocystis, 766<br /><i>Anna A. Zorina, Galina V. Novikova, and Dmitry A. Los</i></p> <p><b>Section 14: Chaperonins and stress, 781</b></p> <p>14.1 GroEL/ES chaperonin: unfolding and refolding reactions, 783<br /><i>Victor V. Marchenkov, Nataliya A. Ryabova, Olga M. Selivanova, and Gennady V. Semisotnov</i></p> <p>14.2 Functional comparison between the DnaK chaperone systems of Streptococcus intermedius and Escherichia coli, 791<br /><i>Toshifumi Tomoyasu and Hideaki Nagamune</i></p> <p>14.3 Coevolution analysis illuminates the evolutionary plasticity of the chaperonin system GroES/L, 796<br /><i>Mario A. Fares</i></p> <p>14.4 ClpL ATPase: a novel chaperone in bacterial stress responses, 812<br /><i>Pratick Khara and Indranil Biswas</i></p> <p>14.5 Duplicated groEL genes inMyxococcus xanthus DK1622, 820<br /><i>Yan Wang, Xiao-jing Chen, and Yue-zhong Li</i></p> <p><b>Section 15: Cold shock responses, 827</b></p> <p>15.1 Gene regulation by cold shock proteins via transcription antitermination, 829<br /><i>Sangita Phadtare and Konstantin Severinov</i></p> <p>15.2 Metagenomic analysis of microbial cold stress proteins in polar lacustrine ecosystems, 837<br /><i>Hyunmin Koo, Joseph A. Hakim, and Asim K. Bej</i></p> <p>15.3 Role of two-component systems in cold tolerance of Clostridium botulinum, 845<br /><i>Yâgmur Derman, Elias Dahlsten, and Hannu Korkeala</i></p> <p>15.4 Cold shock CspA protein production during periodic temperature cycling in Escherichia coli, 854<br /><i>David Stopar and Tina Ivancic</i></p> <p>15.5 Cold shock response in Escherichia coli: a model system to study posttranscriptional regulation, 859<br /><i>Anna Maria Giuliodori</i></p> <p>15.6 New insight into cold shock proteins: RNA-binding proteins involved in stress response and virulence, 873<br /><i>Charlotte Michaux and Jean-Christophe Giard</i></p> <p>15.7 Light regulation of cold stress responses in Synechocystis, 881<br /><i>Kirill S. Mironov and Dmitry A. Los</i></p> <p>15.8 Escherichia coli cold shock gene profiles in response to overexpression or deletion of CsdA, RNase R, and<br />PNPase and relevance to low-temperature RNA metabolism, 890<br /><i>Sangita Phadtare</i></p> <p><b>Section 16: Adaptation to acid stress, 897</b></p> <p>16.1 Acid-adaptive responses of Streptococcus mutans, and mechanisms of integration with oxidative stress, 899<br /><i>Robert G. Quivey Jr., Roberta C. Faustoferri, Brendaliz Santiago, Jonathon Baker, Benjamin Cross, and Jin Xiao</i></p> <p>16.2 Acid survival mechanisms in neutralophilic bacteria, 911<br /><i>Eugenia Pennacchietti, Fabio Giovannercole, and Daniela De Biase</i></p> <p>16.3 Two-component systems in sensing and adapting to acid stress in Escherichia coli, 927<br /><i>Yoko Eguchi and Ryutaro Utsumi</i></p> <p>16.4 Slr1909, a novel two-component response regulator involved in acid tolerance in Synechocystis sp. PCC 6803, 935<br /><i>Lei Chen, Qiang Ren, Jiangxin Wang, and Weiwen Zhang</i></p> <p>16.5 Comparative mass spectrometry–based proteomics to elucidate the acid stress response in Lactobacillus<br />plantarum, 944<br /><i>Tiaan Heunis, Shelly Deane, and Leon M.T. Dicks</i></p> <p><b>Section 17: Adaptation to nitrosative stress, 953</b><br /><br />17.1 Transcriptional regulation by thiol-based sensors of oxidative and nitrosative stress, 955<br /><i>Timothy Tapscott, Matthew A. Crawford, and Andr´es Vázquez-Torres</i></p> <p>17.2 Haemoglobins of Mycobacterium tuberculosis and their involvement in management of environmental stress, 967<br /><i>Kanak L. Dikshit</i></p> <p>17.3 What is it about NO that you don’t understand? The role of heme and HcpR in Porphyromonas gingivalis’s response to nitrate (NO3), nitrite (NO2), and nitric oxide (NO), 976<br /><i>Janina P. Lewis and Benjamin R. Belvin</i></p> <p>17.4 Di-iron RICs: players in nitrosative-oxidative stress defences, 989<br /><i>Lígia S. Nobre and Lí?Ygia M. Saraiva</i></p> <p>17.5 The Vibrio cholerae stress response: an elaborate system geared toward overcoming host defenses during infection, 997<br /><i>Karl-Gustav Rueggeberg and Jun Zhu</i></p> <p>17.6 Ensemble modeling enables quantitative exploration of bacterial nitric oxide stress networks, 1009<br /><i>Jonathan L. Robinson and Mark P. Brynildsen</i></p> <p><b>Section 18: Adaptation to cell envelope stress, 1015</b></p> <p>18.1 The Cpx inner membrane stress response, 1017<br /><i>Randi L. Guest and Tracy L. Raivio</i></p> <p>18.2 New insights into stimulus detection and signal propagation by the Cpx-envelope stress system, 1025<br /><i>Patrick Hoernschemeyer and Sabine Hunke</i></p> <p>18.3 Promiscuous functions of cell envelope stress-sensing systems in Klebsiella pneumoniae and Acinetobacter<br />baumannii, 1031<br /><i>Vijaya Bharathi Srinivasan and Govindan Rajamohan</i></p> <p>18.4 Influence of BrpA and Psr on cell envelope homeostasis and virulence of Streptococcus mutans, 1043<br /><i>Zezhang T.Wen, Jacob P. Bitoun, Sumei Liao, and Jacqueline Abranches</i></p> <p>18.5 Modulators of the bacterial two-component systems involved in envelope stress, transport, and virulence, 1055<br /><i>Rajeev Misra</i></p> <p><b>Section 19: Iron homeostasis, 1065</b></p> <p>19.1 Iron homeostasis and environmental responses in cyanobacteria: regulatory networks involving Fur, 1067<br /><i>María Luisa Peleato, María Teresa Bes, and María F. Fillat</i></p> <p>19.2 Interplay between O2 and iron in gene expression: environmental sensing by FNR, ArcA, and Fur in bacteria, 1079<br /><i>Bryan Troxell and Hosni M. Hassan</i></p> <p>19.3 The iron–sulfur cluster biosynthesis regulator IscR contributes to iron homeostasis and resistance to<br />oxidants in Pseudomonas aeruginosa, 1090<br /><i>Adisak Romsang, James M. Dubbs, and Skorn Mongkolsuk</i></p> <p>19.4 Transcriptional analysis of iron-responsive regulatory networks in Caulobacter crescentus, 1103<br /><i>José F. da Silva</i> Neto</p> <p>19.5 Protein–protein interactions regulate the release of iron stored in bacterioferritin, 1109<br /><i>Huili Yao, YanWang, and Mario Rivera</i></p> <p>19.6 Protein dynamics and ion traffic in bacterioferritin function: a molecular dynamics simulation study on<br />wild-type and mutant Pseudomonas aeruginosa BfrB, 1118<br /><i>Huan Rui, Mario Rivera, and Wonpil Im</i></p> <p><b>Section 20: Metal resistance, 1131</b></p> <p>20.1 Nickel toxicity, regulation, and resistance in bacteria, 1133<br /><i>Lee Macomber and Robert P. Hausinger</i></p> <p>20.2 Metabolic networks to counter Al toxicity in Pseudomonas fluorescens: a holistic view, 1145<br /><i>Christopher Auger, Nishma D. Appanna, and Vasu D. Appanna</i></p> <p>20.3 Genomics of the resistance to metal and oxidative stresses in cyanobacteria, 1154<br /><i>Corinne Cassier-Chauvat and Franck Chauvat</i></p> <p>20.4 Cross-species transcriptional network analysis reveals conservation and variation in response to metal stress in cyanobacteria, 1165<br /><i>Jiangxin Wang, Gang Wu, Lei Chen, and Weiwen Zhang</i></p> <p>20.5 The extracytoplasmic function sigma factor–mediated response to heavy metal stress in Caulobacter crescentus, 1171<br /><i>Rogério F. Lourenco and Suely L. Gomes</i></p> <p>20.6 Metal ion toxicity and oxidative stress in Streptococcus pneumoniae, 1184<br /><i>Christopher A. McDevitt, Stephanie L. Begg, and James C. Paton</i></p> <p><b>Section 21: Quorum sensing, 1195</b></p> <p>21.1 Quorum sensing and bacterial social interactions in biofilms: bacterial cooperation and competition, 1197<br /><i>Yung-Hua Li and Xiao-Lin Tian</i></p> <p>21.2 Recent advances in bacterial quorum quenching, 1206<br /><i>Kok-Gan Chan, Wai-Fong Yin, and Kar-Wai Hong</i></p> <p>21.3 LuxR-type quorum-sensing regulators that are antagonized by cognate pheromones, 1221<br /><i>Stephen C. Winans, Ching-Sung Tsai, Gina T. Ryan, Ana Lidia Flores-Mireles, Esther Costa, Kevin Y. Shih, Thomas C.Winans, Youngchang Kim, Robert Jedrzejczak, and Gekleng Chhor</i></p> <p>21.4 Adaptation to environmental stresses in Streptococcus mutans through the production of its quorum-sensing peptide pheromone, 1232<br /><i>Delphine Dufour, Vincent Leung, and Céline M. Lévesque</i></p> <p>21.5 Quorum sensing in Bacillus cereus in relation to cysteine metabolism and the oxidative stress response, 1242<br /><i>Eugénie Huillet and Michel Gohar</i></p> <p><b>Section 22: Chemotaxis and biofilm formation, 1253</b></p> <p>22.1 The flagellum as a sensor, 1255<br /><i>Rasika M. Harshey</i></p> <p>22.2 Flagellar motility and fitness in xanthomonads, 1265<br /><i>Marie-Agnès Jacques, Jean-Françis Guimbaud, Martial Briand, Arnaud Indiana, and Armelle Darrasse</i></p> <p>22.3 Understanding Listeriamonocytogenes biofilms: perspectives into mechanisms of adaptation and regulation under stress conditions, 1274<br /><i>Lizziane Kretli Winkelströter, Fernanda Barbosa dos Reis-Teixeira, Gabriela Satti Lameu, and Elaine Cristina</i> Pereira De Martinis</p> <p>22.4 Biofilm formation and environmental signals in Bordetella, 1279<br /><i>Tomoko Hanawa</i></p> <p>22.5 Biofilm formation by rhizobacteria in response to water-limiting conditions, 1287<br /><i>Pablo Bogino, Fiorela Nievas, and Walter Giordano</i></p> <p>22.6 Stress conditions triggering mucoid-to-nonmucoid morphotype variation in Burkholderia, and effects on<br />virulence and biofilm formation, 1295<br /><i>Leonilde M. Moreira, Inês N. Silva, Ana S. Ferreira, and Mário R. Santos</i></p> <p>22.7 Effect of environmental conditions present in the fishery industry on the biofilm-forming ability of Staphylococcus aureus, 1304<br /><i>Daniel Vázquez-Sánchez</i></p> <p>22.8 Biofilm development and stress response in the cholera bacterium, 1310<br /><i>Anisia J. Silva and Jorge A. Benitez</i></p> <p>22.9 Outer membrane vesicle secretion: from envelope stress to biofilm formation, 1322<br /><i>Thomas Baumgarten and Hermann J. Heipieper</i></p> <p><b>Section 23: Viable but nonculturable (VBNC) cells, 1329</b></p> <p>23.1 Resuscitation of Vibrios fromthe viable but nonculturable state is induced by quorum-sensing molecules, 1331<br /><i>Mesrop Ayrapetyan, Tiffany C. Williams, and James D. Oliver</i></p> <p>23.2 Differential resuscitative effects of pyruvate and its analogs on VBNC (viable but nonculturable)<br />Salmonella, 1338<br /><i>Fumio Amano</i></p> <p>23.3 Environmental persistence of Shiga toxin–producing E. coli, 1346<br /><i>Philipp Aurass and Antje Flieger</i></p> <p>23.4 Of a tenacious and versatile relic: the role of inorganic polyphosphate (poly-P) metabolism in the survival, adaptation, and virulence of Campylobacter jejuni, 1354<br /><i>Issmat I. Kassem and Gireesh Rajashekara</i></p> <p>Index, i1</p>
<strong>Frans J. de Bruijn</strong> is a Director of Research at the INRA/CNRS Laboratory of Plant-Microbe Interactions in Toulouse, France.

Diese Produkte könnten Sie auch interessieren:

The Biology of Echinostomes
The Biology of Echinostomes
von: Bernard Fried, Rafael Toledo
PDF ebook
149,79 €
Antibiotic Policies
Antibiotic Policies
von: Ian M. Gould, Jos W.M. van der Meer
PDF ebook
213,99 €
Tropical and Parasitic Infections in the Intensive Care Unit
Tropical and Parasitic Infections in the Intensive Care Unit
von: Charles Feldman, George A. Sarosi
PDF ebook
149,79 €