Details

Control and Filter Design of Single-Phase Grid-Connected Converters


Control and Filter Design of Single-Phase Grid-Connected Converters


1. Aufl.

von: Weimin Wu, Frede Blaabjerg, Henry S. Chung, Yuanbin He, Min Huang

115,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 05.12.2022
ISBN/EAN: 9781119886587
Sprache: englisch
Anzahl Seiten: 272

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Control and Filter Design of <b>Single-Phase Grid-Connected Converters</b> <p><b>A state-of-the-art discussion of modern grid inverters</b> <p>In <i>Control and Filter Design of Single-Phase Grid-Connected Converters</i>, a team of distinguished researchers deliver a robust and authoritative treatment of critical distributed power generation technologies, grid-connected inverter designs, and renewable energy utilization. The book includes detailed explanations of the system structure of distributed generation (DG)-grid interface converters and the methods of controlling DG-grid interface voltage source converters (VSCs) with high-order filters. <p>The authors also explore the challenges and obstacles associated with modern power electronic grid-connected inverter control technology and introduce some designed systems that meet these challenges, such as the grid impedance canceller. <p>Readers will discover demonstrations of basic principles, guidelines, examples, and design and simulation programs for grid-connected inverters based on LCL/LLCL technology. They will also find: <ul><li> A thorough introduction to the architectures of DG-grid interfacing converters, including the challenges of controlling DG-grid interfacing VSCs with high-order filters</li> <li> Comprehensive explorations of the control structure and modulation techniques of single-phase grid-tied inverters</li> <li> Practical discussions of an LLCL power filter for single-phase grid-tied inverters</li> <li> Fulsome treatments of design methods of passive damping for LCL/LLCL-filtered grid-tied inverters</li></ul> <p>Perfect for researchers, postgraduate students, and senior level undergraduate students of electrical engineering, <i>Control and Filter Design of Single-Phase Grid-Connected Converters </i>will also benefit research & development engineers involved with the design and manufacture of power electronic inverters.
<p>Author Biography xiii</p> <p>Preface xvii</p> <p><b>Part I Background 1</b></p> <p><b>1 Introduction 3</b></p> <p>1.1 Architecture of DG Grid-Connected Converter 3</p> <p>1.1.1 Power Conversion Stage 5</p> <p>1.1.1.1 Switching Network 5</p> <p>1.1.1.2 Output Filter 6</p> <p>1.1.2 Control Stage 7</p> <p>1.2 Challenges for Controlling DG Grid-Connected VSCs with High-Order Power Filter 8</p> <p>1.2.1 Intrinsic Challenges 8</p> <p>1.2.1.1 Filter Parametric Sensitivities 9</p> <p>1.2.1.2 Digital Delay 10</p> <p>1.2.2 Extrinsic Challenges 10</p> <p>1.2.2.1 Grid Impedance Variation 10</p> <p>1.2.2.2 Disturbances at the PCC 10</p> <p>1.3 Methods for Controlling DG Grid-Connected VSCs with High-Order Power Filter 12</p> <p>1.3.1 Methodologies to Assess the Stability of DG Grid-Connected VSCs 12</p> <p>1.3.1.1 Eigenvalue-Based Analysis 12</p> <p>1.3.1.2 Impedance-Based Stability Analysis 12</p> <p>1.3.1.3 Application Issue Related to Impedance-Based Stability Analysis 13</p> <p>1.3.2 Methods to Mitigate Filter Resonance 14</p> <p>1.3.2.1 Online Grid Impedance Estimation 14</p> <p>1.3.2.2 Inherent Damping 15</p> <p>1.3.2.3 Passive Damping 15</p> <p>1.3.2.4 Active Damping 17</p> <p>1.3.2.5 Hybrid Damping 19</p> <p>1.3.3 Harmonic distortion Mitigation Methods 20</p> <p>1.4 Supplementary Note 21</p> <p>References 22</p> <p><b>2 Control Structure and Modulation Techniques of Single-Phase Grid-Connected Inverter 29</b></p> <p>2.1 Control Structure of Single-Phase Grid-Connected Inverter 29</p> <p>2.1.1 Natural Frame Control 30</p> <p>2.1.2 Synchronous Reference Frame Control 32</p> <p>2.1.3 Grid Synchronization Methods 33</p> <p>2.1.3.1 Zero-Crossing Method 33</p> <p>2.1.3.2 Filtering of Grid Voltages 34</p> <p>2.1.3.3 PLL Technique 34</p> <p>2.2 Modulation Methods 35</p> <p>2.2.1 Unipolar Modulation Method 35</p> <p>2.2.1.1 Continuous Unipolar Modulation 36</p> <p>2.2.1.2 Discontinuous Unipolar Modulation 36</p> <p>2.2.2 Bipolar Modulation Method 39</p> <p>2.3 Summary 40</p> <p>References 41</p> <p><b>Part II LCL/LLCL Power Filter 43</b></p> <p><b>3 An LLCL Power Filter for Single-Phase Grid-Connected Inverter 45</b></p> <p>3.1 Introduction 45</p> <p>3.2 Principle of Traditional LCL Filter and Proposed LLCL Filter 46</p> <p>3.3 Parametric Design of LCL and LLCL Filters 49</p> <p>3.3.1 Constraints and Procedure of Power Filter Design 49</p> <p>3.3.2 Saving Analysis on the Grid-Side Inductance 53</p> <p>3.3.3 Specific Design Consideration for a Simple Passive Damping Strategy 53</p> <p>3.4 Design Examples for LCL and LLCL filters 54</p> <p>3.5 Experimental Results 56</p> <p>3.5.1 Experimental Results 57</p> <p>3.5.2 Analysis and Discussion 58</p> <p>3.6 Summary 59</p> <p>References 59</p> <p><b>4 Modeling and Suppressing Conducted Electromagnetic Interference Noise for LCL/LLCL-Filtered Single-Phase Transformerless Grid-Connected Inverter 61</b></p> <p>4.1 Introduction 61</p> <p>4.2 Conducted EMI Noise Analysis 62</p> <p>4.2.1 CM and DM Voltage Noises 62</p> <p>4.2.2 Spectrum of DM and CM Voltage Noise for GCI Using DUPWM 64</p> <p>4.2.3 Spectrum of DM Voltage Noise for GCI Using BPWM 67</p> <p>4.3 Modified LLCL Filter to Fully Suppress the Conducted EMI Noise for GCI Using DUPWM 68</p> <p>4.3.1 Modified Solution for LLCL Filter 68</p> <p>4.3.2 Improved Parameter Design of LLCL filter 72</p> <p>4.3.3 Constraints on Harmonics of the Grid-Injected Current and EMI Noise Within 150 kHz to 1 MHz 72</p> <p>4.3.3.1 Constraints on Leakage Current 73</p> <p>4.3.4 Experimental Verification 74</p> <p>4.3.4.1 Power Spectrum of the Grid-Injected Current 75</p> <p>4.3.4.2 Measured Conducted EMI Noise 75</p> <p>4.3.5 Negative Dc-rail Voltage with Respect to the Earth V Dc_n and Leakage Current 78</p> <p>4.4 Novel DM EMI Suppressor for LLCL-Filtered GCI without CM Noise Issue 79</p> <p>4.4.1 Proposed DM EMI Suppressor 79</p> <p>4.4.2 Experimental Verification 83</p> <p>4.5 Summary 85</p> <p>4.5.1 For Single-Phase Transformerless GCI Using DUPWM 85</p> <p>4.5.2 For Single-Phase Transformerless GCI Using BPWM or a System Without cm EMI Noise Issue 85</p> <p>References 86</p> <p><b>Part III Passive Damping 89</b></p> <p><b>5 Design of Passive Damper for LCL/LLCL-Filtered Grid-Connected Inverter 91</b></p> <p>5.1 Introduction 91</p> <p>5.2 Design Method for Passive Damping 92</p> <p>5.2.1 Passive Damping Scheme of LCL Filter 92</p> <p>5.2.2 Passive Damping Scheme of LLCL Filter 95</p> <p>5.2.3 Design Example 97</p> <p>5.3 Analysis of Power Loss Caused by the Filter 98</p> <p>5.3.1 Passive Damping Power Loss 98</p> <p>5.3.2 Power Losses in Inductors 100</p> <p>5.4 Experimental Results 101</p> <p>5.5 Summary 110</p> <p>References 113</p> <p><b>6 Composite Passive Damping Scheme for LLCL-Filtered Grid-Connected Inverter 115</b></p> <p>6.1 Introduction 115</p> <p>6.2 Upper and Lower Limits of the PR + HC Controller Gain 116</p> <p>6.2.1 LLCL Filter-Based Grid-Connected Inverter Configuration 116</p> <p>6.2.2 Lower Limit of the PR + HC Controller Gain 117</p> <p>6.2.3 Upper Limit of the PR + HC Controller Gain 118</p> <p>6.3 E-Q-Factor-Based Passive Damping Design 119</p> <p>6.3.1 Principle of the Equivalent Q-Factor Method 119</p> <p>6.3.2 E-Q-Factor-Based RC Parallel Damping Design 121</p> <p>6.3.3 E-Q-Factor-Based RL Series Damping Design 124</p> <p>6.4 New Composite Passive Damping Scheme for the LLCL Filter 126</p> <p>6.4.1 Composite Passive Damping Scheme 126</p> <p>6.4.2 Design Example 127</p> <p>6.4.3 Analysis of Achieved Damping 129</p> <p>6.5 Experimental Verification 134</p> <p>6.6 Summary 136</p> <p>References 138</p> <p><b>Part IV Robust Control Design 139</b></p> <p><b>7 Robust Hybrid Damper Design for LCL/LLCL-Filtered Grid-Connected Inverter 141</b></p> <p>7.1 Introduction 141</p> <p>7.2 Control Bandwidth Analysis of the Grid-Current Feedback Method 142</p> <p>7.2.1 LCL/LLCL-Filtered Grid-Connected Inverter System 142</p> <p>7.2.2 Maximum Achieved Bandwidth of the Control Method 143</p> <p>7.3 Proposed Single-Loop Control with High Bandwidth 145</p> <p>7.3.1 Mathematical Model of the Proposed Single-Loop Control with Hybrid Damper 145</p> <p>7.3.2 System-Characteristics-Based Single-Loop Control Design Methodology 148</p> <p>Step 1: Design of the RC Parallel Damper 148</p> <p>Step 2: Design of the Proportionality Coefficient K p of the PR + HC Regulator 148</p> <p>Step 3: Determination of the Critical Grid Inductance 149</p> <p>Step 4: Determination of the Critical Frequency Region for Case 1 and the Critical Frequency (f 0 of Case 1 and f L0 of Case 2) 151</p> <p>Step 5: Design of the Digital Notch Filter 152</p> <p>Step 6: Checking the Phase Margin of the Entire System 153</p> <p>7.4 Design Example 155</p> <p>7.4.1 System Design 155</p> <p>7.4.2 System Parameter Robustness Analysis 156</p> <p>7.5 Experimental Verification 156</p> <p>7.6 Summary 160</p> <p>References 161</p> <p><b>8 Robust Impedance-Based Design of LLCL-Filtered Grid-Connected Inverter against the Wide Variation of Grid Reactance 163</b></p> <p>8.1 Introduction 163</p> <p>8.2 Modeling of the LLCL-Type Grid-Connected Inverter 164</p> <p>8.2.1 System Description 164</p> <p>8.2.2 Norton Equivalent Model 165</p> <p>8.3 Stability Analysis Considering Grid-Reactance Variation 166</p> <p>8.3.1 Non-Passive Regions of Inverter Output Admittance 166</p> <p>8.3.2 Possible Instability Under the Wide Variation of Grid Reactance 167</p> <p>8.4 Proposed Measures and Design Procedure Under the Grid-Reactance Variation Condition 168</p> <p>8.4.1 Proposed Measures Against Grid-Reactance Variation 168</p> <p>8.4.2 Design Procedure 170</p> <p>Step 1- Calculate the Minimum Grid Inductance L g_min 170</p> <p>Step 2- Design L 1 ,C total , and L 2 171</p> <p>Step 3- Design the Bypass Filtering Branch 172</p> <p>Step 4- Design the Minimum Grid Capacitance C g_min 172</p> <p>Step 5- Design the Proportional Gain K P of the PR+HC Regulator 172</p> <p>Step 6- Select C EMI ,C d , and R d 173</p> <p>Step 7- Check F I < F D 2 175</p> <p>8.5 Design Example 177</p> <p>8.6 Simulation and Experimental Verification 179</p> <p>8.6.1 Simulation 179</p> <p>8.6.2 Experiments 182</p> <p>8.6.2.1 Experimental Results 183</p> <p>8.6.2.2 Analysis and Discussion 185</p> <p>8.7 Summary 187</p> <p>References 187</p> <p><b>Part V Active Damping 191</b></p> <p><b>9 Active Damping of LLCL-Filter Resonance Based on LC-Trap Voltage or Current Feedback 193</b></p> <p>9.1 Introduction 193</p> <p>9.2 Control of LLCL-Filtered Grid Converter 194</p> <p>9.2.1 Description and General Control 194</p> <p>9.2.2 Block Diagrams of Different Active Dampers 196</p> <p>9.2.3 Effects of Delay G d (s) 197</p> <p>9.3 Circuit Equivalences of LLCL Active Dampers 199</p> <p>9.3.1 General Virtual Impedance Model 199</p> <p>9.3.2 LC-Trap Voltage Feedback 200</p> <p>9.3.3 LC-Trap Current Feedback 204</p> <p>9.4 Z-Domain Root-Locus Analysis 206</p> <p>9.4.1 Z-Domain Transfer Functions 206</p> <p>9.4.2 Root-Locus Analyses with Different Active Dampers 207</p> <p>9.4.3 Comparison 209</p> <p>9.5 Experimental Verification 209</p> <p>9.6 Summary 212</p> <p>References 213</p> <p><b>10 Enhancement of System Stability Using Active Cancelation to Eliminate the Effect of Grid Impedance on System Stability and Injected Power Quality of Grid-Connected Inverter 217</b></p> <p>10.1 Introduction 217</p> <p>10.2 Principle of the Grid Impedance Cancelator 218</p> <p>10.3 Modeling with the Grid Impedance Cancelator 221</p> <p>10.3.1 System Configuration with the Grid Impedance Cancelator 221</p> <p>10.3.2 AC Voltage Regulation 222</p> <p>10.3.3 Active Damping Function 222</p> <p>10.3.4 dc Capacitor Voltage Control 226</p> <p>10.4 Modeling of the Grid Impedance Cancelator 226</p> <p>10.5 Experimental Verification 231</p> <p>10.6 Summary 239</p> <p>References 239</p> <p>Index 241</p>
<p><b>Weimin Wu</b> is a Professor in the Department of Electrical Engineering at the Shanghai Maritime University in China. <p><b>Frede Blaabjerg</b> is a Professor in the Department of Energy at Aalborg University in Denmark. <p><b>Henry Chung</b> is Chair Professor of Electrical Engineering at City University of Hong Kong, China. <p><b>Yuanbin He</b> is Associate Professor in the School of Automation at Hangzhou Dianzi University in China. <p><b>Min Huang</b> is a Lecturer in the Department of Electrical Engineering at the Shanghai Maritime University in China.
<p><b>A state-of-the-art discussion of modern grid inverters</b> <p>In <i>Control and Filter Design of Single-Phase Grid-Connected Converters</i>, a team of distinguished researchers deliver a robust and authoritative treatment of critical distributed power generation technologies, grid-connected inverter designs, and renewable energy utilization. The book includes detailed explanations of the system structure of distributed generation (DG)-grid interface converters and the methods of controlling DG-grid interface voltage source converters (VSCs) with high-order filters. <p>The authors also explore the challenges and obstacles associated with modern power electronic grid-connected inverter control technology and introduce some designed systems that meet these challenges, such as the grid impedance canceller. <p>Readers will discover demonstrations of basic principles, guidelines, examples, and design and simulation programs for grid-connected inverters based on LCL/LLCL technology. They will also find: <ul><li> A thorough introduction to the architectures of DG-grid interfacing converters, including the challenges of controlling DG-grid interfacing VSCs with high-order filters</li> <li> Comprehensive explorations of the control structure and modulation techniques of single-phase grid-tied inverters</li> <li> Practical discussions of an LLCL power filter for single-phase grid-tied inverters</li> <li> Fulsome treatments of design methods of passive damping for LCL/LLCL-filtered grid-tied inverters</li></ul> <p>Perfect for researchers, postgraduate students, and senior level undergraduate students of electrical engineering, <i>Control and Filter Design of Single-Phase Grid-Connected Converters </i>will also benefit research & development engineers involved with the design and manufacture of power electronic inverters.

Diese Produkte könnten Sie auch interessieren:

Uncertainty in the Electric Power Industry
Uncertainty in the Electric Power Industry
von: Christoph Weber
PDF ebook
106,99 €
Interfacial Transport Phenomena
Interfacial Transport Phenomena
von: John C. Slattery, Leonard Sagis, Eun-Suok Oh
PDF ebook
213,99 €
Constructal Theory of Social Dynamics
Constructal Theory of Social Dynamics
von: Adrian Bejan, Gilbert W. Merkx
PDF ebook
213,99 €