Details

Gas Injection into Geological Formations and Related Topics


Gas Injection into Geological Formations and Related Topics


1. Aufl.

von: Alice Wu, John J. Carroll, Mingqiang Hao, Weiyao Zhu

197,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 31.03.2020
ISBN/EAN: 9781119593348
Sprache: englisch
Anzahl Seiten: 384

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>This is the eighth volume in the series, <i>Advances in Natural Gas Engineering</i>, focusing on gas injection into geological formations and other related topics, very important areas of natural gas engineering. This volume includes information for both upstream and downstream operations, including chapters detailing the most cutting-edge techniques in acid gas injection, carbon capture, chemical and thermodynamic models, and much more.</p> <p>Written by some of the most well-known and respected chemical and process engineers working with natural gas today, the chapters in this important volume represent the most state-of-the-art processes and operations being used in the field. Not available anywhere else, this volume is a must-have for any chemical engineer, chemist, or process engineer in the industry. <i>Advances in Natural Gas Engineering</i> is an ongoing series of books meant to form the basis for the working library of any engineer working in natural gas today.</p>
<p>Preface xvii</p> <p><b>1 Modifying Effects of Hydrogen Sulfide When Contemplating Subsurface Injection of Sulfur 1<br /></b><i>Mitchell J. Stashick, Gabriel O. Sofekun and Robert A. Marriott</i></p> <p>1.1 Introduction 2</p> <p>1.2 Experimental 3</p> <p>1.2.1 Materials 3</p> <p>1.2.2 Rheometer 4</p> <p>1.3 Results and Discussion 5</p> <p>1.4 Conclusions 7</p> <p>References 8</p> <p><b>2 Experimental Determination of CO<sub>2</sub> Solubility in Brines At High Temperatures and High Pressures and Induced Corrosion of Materials in Geothermal Equipment 9<br /></b><i>Marie Poulain, Jean-Charles Dupin, Hervé Martinez and Pierre Cézac</i></p> <p>2.1 Introduction 9</p> <p>2.2 Experimental Section 11</p> <p>2.2.1 Chemicals 11</p> <p>2.2.2 Test Solutions 11</p> <p>2.2.3 Metals 11</p> <p>2.2.4 CO<sub>2</sub> Solubility Measurements 12</p> <p>2.2.5 Material Corrosion Study 13</p> <p>2.3 Results and Discussion 15</p> <p>2.3.1 CO<sub>2</sub> Solubility Measurements 15</p> <p>2.3.2 Material Corrosion Study 16</p> <p>2.4 Conclusion 19</p> <p>2.5 Acknowledgments 19</p> <p>References 19</p> <p><b>3 Experimental Study of the Liquid Vapour Equilibrium of the System Water-CO<sub>2</sub>-O<sub>2</sub>-NO<sub>x</sub> Under Pressure at 298 K 21<br /></b><i>Esther Neyrolles, Georgio Bassil, François Contamine, Pierre Cézac and Philippe Arpentinier</i></p> <p>3.1 Introduction 22</p> <p>3.2 Literature Review 23</p> <p>3.2.1 Carbon Dioxide and Water System 23</p> <p>3.2.2 Nitrogen Oxides and Water System 24</p> <p>3.2.3 Nitric Oxide Henry Constant at 298 K 25</p> <p>3.3 Experimental Section 26</p> <p>3.3.1 Chemicals 26</p> <p>3.3.2 Apparatus 26</p> <p>3.3.3 Operating Procedure 27</p> <p>3.3.4 Experimental Analysis 29</p> <p>3.3.4.1 Aqueous Analysis 29</p> <p>3.3.4.2 Gas Phase Analysis 30</p> <p>3.3.5 Estimation of the Concentrations of All the Species in the Aqueous Phase 31</p> <p>3.3.6 Uncertainties 32</p> <p>3.4 Results and Discussion 33</p> <p>3.4.1 Solubility of Carbon Dioxide 33</p> <p>3.4.2 Nitrogen Oxides Repartition in the Aqueous Phase 35</p> <p>3.4.3 Nitric Oxide Henry Constant at 298 K 37</p> <p>3.5 Conclusion 38</p> <p>3.6 Acknowledgments 38</p> <p>References 38</p> <p><b>4 The Use of IR Spectroscopy to Follow the Absorption of CO<sub>2</sub> in Amine Media – Evaluation of the Speciation with Time 41<br /></b><i>E. Brugere, J-M. Andanson and K. Ballerat-Busserolles</i></p> <p>4.1 Introduction 41</p> <p>4.2 Materials and Methods 44</p> <p>4.2.1 Chemicals 44</p> <p>4.2.2 Sample Preparation 44</p> <p>4.3 Experimental Device 44</p> <p>4.4 Results and Discussion 46</p> <p>4.4.1 Kinetic of Absorption 46</p> <p>4.4.2 Calibration of Speciation 46</p> <p>4.4.2.1 Sample Preparation 46</p> <p>4.4.2.2 Spectra and Results 48</p> <p>4.4.2.3 Physisorption 49</p> <p>4.4.2.4 Full Curve Speciation 51</p> <p>4.5 Conclusion 52</p> <p>4.6 Acknowledgments 53</p> <p>References 53</p> <p><b>5 Solubility of Methane, Nitrogen, Hydrogen Sulfide and Carbon Dioxide in Mixtures of Dimethyl Ethers of Polyethylene Glycol 55<br /></b><i>Alan E. Mather and Kurt A. G. Schmidt</i></p> <p>5.1 Introduction 56</p> <p>5.2 Experimental 56</p> <p>5.3 Equation of State Development 57</p> <p>5.4 EoS Model Results 62</p> <p>5.5 Krichevsky-Ilinskaya Equation 67</p> <p>5.6 Conclusions 70</p> <p>5.7 Nomenclature 71</p> <p>References 72</p> <p><b>6 Water Content of Hydrogen Sulfide – A Review 77<br /></b><i>Eugene Grynia and Bogdan Ambrożek</i></p> <p>6.1 Introduction 77</p> <p>6.2 Literature Review 78</p> <p>6.2.1 Wright and Maass (1932) 79</p> <p>6.2.2 Selleck <i>et al. </i>(1951, 1952) 82</p> <p>6.2.3 Kozintseva (1964) 84</p> <p>6.2.4 Clarke and Glew (1971) 88</p> <p>6.2.5 Lee and Mather (1977) 89</p> <p>6.2.6 Gillespie and Wilson (1982) 92</p> <p>6.2.7 Carroll and Mather (1989) 94</p> <p>6.2.8 Suleimenov and Krupp (1994) 96</p> <p>6.2.9 Chapoy <i>et al. </i>(2005) 97</p> <p>6.2.10 Marriott <i>et al. </i>(2012) 100</p> <p>6.3 Discussion of the Results 102</p> <p>6.4 Conclusions 108</p> <p>References 112</p> <p><b>7 Acid Gas Injection at SemCAMS Kaybob Amalgamated (KA) Gas Plant Operational Design Considerations 115<br /></b><i>Rinat Yarmukhametov, James R. Maddocks and Jason Lui</i></p> <p>7.1 Project Drivers 116</p> <p>7.2 Process Design Basis 117</p> <p>7.2.1 Acid Gas Inlet Design Conditions 117</p> <p>7.2.2 Acid Gas Compositions 117</p> <p>7.2.3 Acid Gas Compressor Discharge 118</p> <p>7.2.3.1 Acid Gas Conditions 118</p> <p>7.2.3.2 Acid Gas Composition 118</p> <p>7.3 Acid Gas Compression Description 120</p> <p>7.4 AGI System Capacity Control 120</p> <p>7.5 Project Execution 123</p> <p>7.6 Risk Assessment Strategy 125</p> <p>7.7 Utilities & Tie-Ins 126</p> <p>7.8 Relief System Design 127</p> <p>7.8.1 KA Gas Plant Flare System 127</p> <p>7.8.2 AGI System Flare System 128</p> <p>7.8.3 Evaluation of Existing Plant Blowdowns Concurrent with the AGI Compressors Blowdown 128</p> <p>7.8.4 Inherently Safer Design (ISD) Strategies in Pressure Relief System Design for AGI Systems 129</p> <p>7.8.5 MDMT Evaluation 131</p> <p>7.8.6 Drain Management 132</p> <p>7.9 Discussion 133</p> <p>7.10 Start-Up 133</p> <p>7.11 Conclusions 135</p> <p><b>8 Reciprocating Compressors in Acid Gas Service 137<br /></b><i>Dan Hannon</i></p> <p>8.1 Introduction 138</p> <p>8.2 Reactivity 138</p> <p>8.3 Safety 138</p> <p>8.4 Design 139</p> <p>8.5 Materials 140</p> <p>8.6 Condensate/Dewpoint 141</p> <p>8.7 Compressor Selection 142</p> <p>8.8 Conclusion 144</p> <p><b>9 Case Study: Wellbore Thermodynamic Analysis of Erhao Acid Gas Injection Project 145<br /></b><i>Zhu Zhu and Shouxi Wang</i></p> <p>9.1 Introduction 145</p> <p>9.2 Erhao Station Process and Injection Basic Data 147</p> <p>9.3 Acid Gas Injection Well and Reservoir 148</p> <p>9.3.1 Injection Well 148</p> <p>9.3.1.1 Basic Data 149</p> <p>9.3.1.2 Characteristics 149</p> <p>9.3.2 Injection Reservoir 150</p> <p>9.4 Thermodynamic Analysis and Injection Pressure 151</p> <p>9.4.1 Comprehensive Model 151</p> <p>9.4.2 Initial Acid Gas 152</p> <p>9.4.3 Compressed and Dehydrated Acid Gas 155</p> <p>9.4.4 Comparison of Different Acid Gas Composition 158</p> <p>9.4.5 Comparison of Different Wellhead Temperature 158</p> <p>9.5 Conclusion 159</p> <p>References 159</p> <p><b>10 Selecting CO<sub>2</sub> Sinks CCUS Deployment in South Mid-West Kansas 161<br /></b><i>Eugene Holubnyak, Martin Dubois and Jennifer Hollenbach</i></p> <p>10.1 Introduction 161</p> <p>10.2 Process for Determining Potential Phase II Sites 165</p> <p>10.2.1 Geologic Setting 165</p> <p>10.3 Oil Production History and CO<sub>2</sub> Enhanced Oil Recovery Potential in the Region 170</p> <p>10.4 Estimating CO<sub>2</sub> Storage Volume—Building the Static Model 171</p> <p>10.4.1 Workflow for Building 3-D Static Model 171</p> <p>10.4.2 Well Data 172</p> <p>10.4.3 Petrophysics 173</p> <p>10.4.4 Three-Dimensional Static Model 174</p> <p>10.5 Estimating CO<sub>2</sub> Storage Volume—Running the Dynamic Model 175</p> <p>10.5.1 Initial Reservoir Conditions and Simulation Constraints 176</p> <p>10.5.2 Simulation Results 177</p> <p>10.6 Summary/Discussion 179</p> <p>References 180</p> <p><b>11 Salt Precipitation at an Active CO<sub>2</sub> Injection Site 183<br /></b><i>Stephen Talman, Alireza Rangriz Shokri, Rick Chalaturnyk and Erik Nickel</i></p> <p>11.1 Introduction 184</p> <p>11.2 Laboratory and Field Data 186</p> <p>11.2.1 Data Sources 186</p> <p>11.2.2 Chemical Composition of Formation Water 186</p> <p>11.2.3 X-Ray Diffraction Analysis of Recovered Salt Samples 187</p> <p>11.2.4 Downhole Video Analysis and Image Sizing 188</p> <p>11.2.4.1 Material Fixed to the Wellbore 188</p> <p>11.2.4.2 Lowest Reaches of the Well 190</p> <p>11.2.4.3 Dislodged Materials 191</p> <p>11.3 Implication and Interpretation 193</p> <p>11.4 Conclusions and Remarks 196</p> <p>11.5 Acknowledgments 198</p> <p>References 198</p> <p><b>12 The Development Features and Cost Analysis of CCUS Industry in China 201<br /></b><i>Hao Mingqiang, Hu Yongle, Wang Shiyu and Song Lina</i></p> <p>12.1 Introduction 202</p> <p>12.2 Characteristics of CCUS Project 202</p> <p>12.2.1 Distribution and Characteristics of CCUS Project 202</p> <p>12.2.2 Types and Scales of CCUS Emission Sources 202</p> <p>12.2.3 Emission Scales and Composition of CO<sub>2 </sub>Emission Enterprises in China 204</p> <p>12.2.4 Distributions of CO<sub>2</sub> Sources in China 204</p> <p>12.2.5 Characteristic Comparison Between Projects in China and Abroad 205</p> <p>12.3 Industry Patterns & Driving Modes 209</p> <p>12.3.1 CCUS Industry Patterns at Home and Aboard 209</p> <p>12.3.2 Driving Modes of CCUS Industry 210</p> <p>12.4 Composition & Factors of CO<sub>2</sub> Source Cost 213</p> <p>12.5 Conclusions 215</p> <p>References 216</p> <p><b>13 CO<sub>2</sub> Movement Monitoring and Verification in a Fractured Mississippian Carbonate Reservoir during EOR at Wellington Field in South Kansas 217<br /></b><i>Yevhen Holubnyak, Eric Mackay, Oleg Ishkov and Willard Watney</i></p> <p>13.1 Introduction 218</p> <p>13.2 Wellington Field Faults and Fractures 219</p> <p>13.3 EOR Field Operations and Production/Injection History 220</p> <p>13.4 Geochemical Monitoring Survey Setup 221</p> <p>13.5 Geochemical Monitoring Survey Observations 222</p> <p>13.6 Conclusions 225</p> <p>13.7 Acknowledgements 225</p> <p>13.8 Disclaimer 225</p> <p>References 226</p> <p><b>14 Simulation Study On Carbon Dioxide Enhanced Oil Recovery 227<br /></b><i>Maojie Chai and Zhangxin Chen</i></p> <p>14.1 Introduction 227</p> <p>14.2 Phase Behavior Study 229</p> <p>14.3 Simulation Study 230</p> <p>14.3.1 Fluid Sample Properties 230</p> <p>14.3.2 Phase Behavior Simulation 230</p> <p>14.3.3 Lab Scale Core Flooding Simulation 235</p> <p>14.3.4 Sensitivity Analysis of Uncertain Parameters 240</p> <p>14.3.5 Updated Relative Permeability Through History Match 241</p> <p>14.4 Conclusions 243</p> <p>References 243</p> <p><b>15 Blowout Recovery for Acid Gas Injection Wells 245<br /></b><i>Ray Mireault</i></p> <p>15.1 Introduction 246</p> <p>15.2 Methodology 247</p> <p>15.3 Wellbore Behaviour 247</p> <p>15.4 Acid Gas Flammability and Toxicity 249</p> <p>15.5 Escape Plume Behaviour 250</p> <p>15.6 Blowout Recovery Operations 252</p> <p>15.6.1 Initial Reconnaissance 253</p> <p>15.6.2 Heavy Equipment for AG Recovery Operations 253</p> <p>15.7 Recommendations for Further Investigation 254</p> <p>15.7.1 Acid Gas Escape Cloud Modelling 254</p> <p>15.7.2 Personnel Training 255</p> <p>15.7.3 Development of Recovery Equipment and Procedures 256</p> <p>15.8 Acknowledgments 256</p> <p>References 257</p> <p><b>16 The Comprehensive Considerations of Leak Detection Solutions for Acid Gas Injection Pipelines 259<br /></b><i>Shouxi Wang, John Carroll, Fan Ye, Lirong Yao, Jianqiang Teng and Haifeng Qiu</i></p> <p>16.1 Introduction 260</p> <p>16.2 Flowing and Layout Features, Leak Detection Strategies of the Acid Gas Pipelines 260</p> <p>16.3 The Behavior of the Acid Gas Flows with Leakages 261</p> <p>16.3.1 Leak Experiments on Liquid Pipeline 261</p> <p>16.3.2 Leak Experiments on Gas Pipeline 262</p> <p>16.3.3 Summary of Leak Responses 265</p> <p>16.4 Specification, Measurement Requirements and Features of the Available Pipeline Leak Detection Methods 267</p> <p>16.4.1 Mass Balance (MB) 267</p> <p>16.4.2 Pressure Point Analysis (PPA) 268</p> <p>16.4.3 Real-Time Model (RTM) 269</p> <p>16.4.4 Data Requirements of the CPM Leak Detection Methods 270</p> <p>16.4.5 Matrix Features of the Pipeline LDS 271</p> <p>16.5 Evaluation of the Erhaolian AGI LDS System 271</p> <p>16.5.1 Erhaolian AGI System 271</p> <p>16.5.2 Measurement Responses to Different Leak Size and Location 271</p> <p>16.5.3 The Performances of CPM Leak Detection Methods 278</p> <p>16.6 Conclusion 281</p> <p>16.7 Acknowledgments 281</p> <p>References 282</p> <p><b>17 Injection of Non-Condensable Gas in SAGD Using Modified Well Configurations - A Simulation Study 283<br /></b><i>Yushuo Zhang and Brij Maini</i></p> <p>17.1 Introduction 284</p> <p>17.1.1 Background 284</p> <p>17.1.2 Project Objectives 284</p> <p>17.2 Relevant Field History 285</p> <p>17.2.1 Depositional History 285</p> <p>17.3 Reservoir Characterization 285</p> <p>17.3.1 Geology Overview 285</p> <p>17.3.1.1 Core Analysis 285</p> <p>17.3.1.2 Log Analysis 285</p> <p>17.3.1.3 Shale Volume Calculations 286</p> <p>17.3.1.4 Porosity Calculations 286</p> <p>17.3.1.5 Water and Oil Saturation 286</p> <p>17.3.2 Permeability Data 287</p> <p>17.3.3 PVT Data 287</p> <p>17.3.4 Reservoir Values 288</p> <p>17.4 Analytical Production Forecast 288</p> <p>17.4.1 Butler Model 288</p> <p>17.4.2 Reservoir Performance with NCG Co-Injection 291</p> <p>17.5 Reservoir Simulation 291</p> <p>17.5.1 Geological Model 291</p> <p>17.5.2 Reservoir Property 292</p> <p>17.5.3 Well Location 292</p> <p>17.5.4 Initial Reservoir Simulation Inputs 293</p> <p>17.5.5 Relative Permeability Data 293</p> <p>17.5.6 Well Operational Parameters 294</p> <p>17.5.7 History Match 295</p> <p>17.5.7.1 Flowing Boundary Condition 295</p> <p>17.5.7.2 Final History Match Results 295</p> <p>17.5.8 SAGD Production Forecasts 297</p> <p>17.5.8.1 Base Case HZ Well Production with Steam Only (Flowing Boundary) 298</p> <p>17.5.8.2 Forecast Results: Production Rate 299</p> <p>17.5.8.3 Forecast Results: Steam-to-Oil Ratio 299</p> <p>17.5.9 Modified Well Simulation Forecast 299</p> <p>17.5.9.1 Modified Well Configuration with Non-Flowing Boundary 299</p> <p>17.5.9.2 Perforating Below Top Water Zone 299</p> <p>17.5.9.3 Forecast Results: Production Rate 302</p> <p>17.5.9.4 Forecast Results: Steam-to-Oil Ratio 302</p> <p>17.5.9.5 Steam Chamber Development without NCG 303</p> <p>17.5.9.6 Steam Chamber Development with NCG 304</p> <p>17.5.9.7 Simulation Sensitivity Analysis in Non-Flowing Boundary 304</p> <p>17.5.9.8 Summary of Simulation Results 306</p> <p>17.6 Conclusion 306</p> <p>References 308</p> <p><b>18 The Study on the Gas Override Phenomenon in Condensate Gas Reservoir 311<br /></b><i>Kun Huang, Weiyao Zhu, Qitao Zhang, Jing Xia and Kai Luo</i></p> <p>18.1 Introduction 311</p> <p>18.2 Experimental 312</p> <p>18.2.1 Pressure-Volume-Temperature Tests 312</p> <p>18.2.2 Pressure-Volume-Temperature Tests Design 313</p> <p>18.3 Results and Discussion 313</p> <p>18.3.1 Phase Behavior During the Injection Process 313</p> <p>18.3.2 The Effect of Mass Transfer on the Phase Behavior 315</p> <p>18.3.3 Composition of the Mixture in the Cylinder 317</p> <p>18.4 Conclusions 319</p> <p>References 319</p> <p><b>19 Study on Characteristics of Water-Gas Flow in Tight Gas Reservoir with High Water Saturation 321<br /></b><i>Qitao Zhang, Weiyao Zhu, Wenchao Liu, Yunqing Shi and Jin Yan</i></p> <p>19.1 Introduction 322</p> <p>19.2 Experiments 322</p> <p>19.2.1 Materials 322</p> <p>19.2.2 Experimental Procedure 323</p> <p>19.2.3 Experimental Results and Analysis 324</p> <p>19.3 Numerical Simulation for Tight Gas Reservoir with Low Gas Saturation 327</p> <p>19.3.1 Model Description 327</p> <p>19.3.2 Model Validation 328</p> <p>19.3.3 Effect of Threshold Pressure Gradient 329</p> <p>19.4 Conclusions 331</p> <p>References 331</p> <p><b>20 The Description and Modeling of Gas Override in Condensate Gas Reservoir 333<br /></b><i>Weiyao Zhu, Kun Huang, Yan Sun and Qitao Zhang</i></p> <p>20.1 Introduction 333</p> <p>20.2 Mathematical Formulation 335</p> <p>20.2.1 Numerical Scheme 337</p> <p>20.3 Results and Discussion 337</p> <p>20.3.1 The Development and Assessment of Gas Override 337</p> <p>20.3.2 Sensitivity Analysis 339</p> <p>20.3.2.1 The Influence of Density Difference on Gas Override 340</p> <p>20.4 Conclusions 341</p> <p>References 342</p> <p><b>21 Research on the Movable Water in the Pores of Tight Sandstone Gas Reservoirs 343<br /></b><i>Guodong Zou, Weiyao Zhu, Wenchao Liu, Yunqing Shi and Jin Yan</i></p> <p>21.1 Introduction 343</p> <p>21.2 Experimental 344</p> <p>21.2.1 Experimental Equipment 344</p> <p>21.2.2 Experimental Procedure 345</p> <p>21.3 Results and Discussion 346</p> <p>21.3.1 Change of the Saturated Water 346</p> <p>21.3.2 Test of the Movable Water 348</p> <p>21.4 Conclusion 349</p> <p>References 350</p> <p><b>22 Probabilistic Petroleum Portfolio Options Evaluation Model (POEM) 351<br /></b><i>Darryl Burns</i></p> <p>22.1 Project Economic Evaluation Tool (PEET) 351</p> <p>22.2 Portfolio Options Evaluation Tool (POET) 352</p> <p>22.3 Program Calculation Procedures 352</p> <p>22.3.1 General Cash Flow Calculation and Profitability Indicators 352</p> <p>22.3.1.1 General Cash Flow Calculation 352</p> <p>22.4 General Calculation Steps 353</p> <p>Index 361</p>
<p><b>Ying (Alice) Wu</b> is currently the President of Sphere Technology Connection Ltd. (STC) in Calgary, Canada. From 1983 to 1999 she was an Assistant Professor and Researcher at Southwest Petroleum Institute (now Southwest Petroleum University, SWPU) in Sichuan, China. <p><b>John J. Carroll,</b> PhD, PEng is the Director at Geostorage Process Engineering for Gas Liquids Engineering, Ltd. in Calgary, Canada. His first book, <i>Natural Gas Hydrates: A Guide for Engineers,</i> is now in its second edition, and he is the author or co-author of 50 technical publications and about 40 technical presentations. <p><b>Mingqiang Hao,</b> PhD, is a senior engineer of reservoir engineering and the deputy chief engineer of Oilfield Development at the Research Institute of Petroleum Exploration & Development (RIPED), PetroChina. <p><b>Weiyao Zhu</b> is a Professor of Mechanics at the University of Science & Technology, Beijing, holding the Chair in the Department of Building Environment of Energy Engineering and the Institute of Applied Mechanics. He has published twelve books and over 330 research papers and has 17 patents and 26 software copyrights to his credit. He has also been recognized with many professional and academic awards.
<p><b>This eighth volume in the series, Advances in Natural Gas Engineering, covers gas injection into geological formations, one of the hottest topics in the industry, with contributions from some of the most well-known and respected engineers in the world.</b> <p>This is the eighth volume in the series, <i>Advances in Natural Gas Engineering</i>, focusing on gas injection into geological formations and other related topics, very important areas of natural gas engineering. This volume includes information for both upstream and downstream operations, including chapters detailing the most cutting-edge techniques in acid gas injection, carbon capture, chemical and thermodynamic models, and much more. <p>Written by some of the most well-known and respected chemical and process engineers working with natural gas today, the chapters in this important volume represent the most state-of-the-art processes and operations being used in the field. Not available anywhere else, this volume is a must-have for any chemical engineer, chemist, or process engineer in the industry. <i>Advances in Natural Gas Engineering</i> is an ongoing series of books meant to form the basis for the working library of any engineer working in natural gas today. <p><b>This outstanding new reference:</b> <ul> <li>Updates the state-of-the-art processes and technologies for gas injection, one of the most important elements in natural gas engineering</li> <li>Covers enhanced oil recovery and how it is related to CO2 capture and acid gas injection in an integrated way of thinking</li> <li>Explores technologies for working towards a zero-emission process in natural gas production</li> <li>Edited and written by a team of the world's most well-known scientists and engineers in the field</li> </ul>

Diese Produkte könnten Sie auch interessieren:

Uncertainty in the Electric Power Industry
Uncertainty in the Electric Power Industry
von: Christoph Weber
PDF ebook
106,99 €
Interfacial Transport Phenomena
Interfacial Transport Phenomena
von: John C. Slattery, Leonard Sagis, Eun-Suok Oh
PDF ebook
213,99 €
Constructal Theory of Social Dynamics
Constructal Theory of Social Dynamics
von: Adrian Bejan, Gilbert W. Merkx
PDF ebook
213,99 €