Details

Innovative and Emerging Technologies for Textile Dyeing and Finishing


Innovative and Emerging Technologies for Textile Dyeing and Finishing


1. Aufl.

von: Luqman Jameel Rather, Aminoddin Haji, Mohd Shabbir

193,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 20.01.2021
ISBN/EAN: 9781119710295
Sprache: englisch
Anzahl Seiten: 432

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>With the public enhanced awareness towards eco-preservation, eco-safety and health concerns, environmentally benign, nontoxic and sustainable bioresource materials produced mainly from non-food crops have revolutionized all industrial sectors particularly textile industry. In recent years, textile industries in developed countries are getting increasing interest in global interest due to the varied and changing world market conditions in terms of price, durability and fiber mixtures as well as design, colors, weight, ease of handling and product safety. The increasing environmental and health concerns owing to the use of large quantities of water and hazardous chemicals in conventional textile finishing processes lead to the design and development of new dyeing strategies and technologies. Effluents produced from these textiles wet processing industries are very diverse in chemical composition, ranging from inorganic finishing agents, surfactants, chlorine compounds, salts, total phosphate to polymers and organic products.</p> <p>This aspect forced western countries to exploit their high technical skills in the advancements of textile materials for high quality technical performances, and development of cleaner production technologies for cost effective and value-added textile materials. Therefore, vast and effective research investigations have been undertaken all over the world to minimize the negative environmental impact of synthetic chemical agents through the sustainable harvest of eco-friendly bioresource materials.</p> <p>The book will discuss following research developments in academic and industry:</p> <ul style="line-height: 25px; margin-left: 15px; margin-top: 0px; font-family: Arial; font-size: 13.3333px;"> <li>Improvement in dye extraction and its applications</li> <li>Impact of textile dyeing on environment</li> <li>Textile finishing by natural and ecofriendly means</li> <li>Natural dyes as environmental-friendly bioresource products</li> <li>Textile effluent remediation via physical, chemical and biological processes.</li> </ul>
<p>Preface xv</p> <p><b>1 Eco-Friendly Stimuli and Their Impact on the Tinctorial Capacity of Textile Materials 1<br /></b><i>Vasilica Popescu and Luminita Ciobanu</i></p> <p>1.1 Introduction 2</p> <p>1.2 Characterization of Ultrasound Physical Stimuli 2</p> <p>1.2.1 Ultrasonic Equipment 3</p> <p>1.2.2 Effects of Ultrasound in Liquid Mediums 4</p> <p>1.2.3 Types of Ultrasound Cavitation 6</p> <p>1.2.4 The Action of Ultrasound on Polymers 7</p> <p>1.2.5 Applications of Ultrasound in Textile Finishing 8</p> <p>1.2.5.1 Ultrasound-Assisted Washing of Textile Materials 9</p> <p>1.2.5.2 Ultrasound-Assisted Pre-Treatments (Scouring, Bleaching) 9</p> <p>1.2.5.3 Ultrasound as Physical Stimulus for Textile Dyeing 11</p> <p>1.2.5.4 Ultrasound-Assisted Extraction and Dyeing Using Natural Dyes 11</p> <p>1.2.5.5 Ultrasound-Assisted Dyeing Using Synthetic Dyes 13</p> <p>1.2.5.6 Ultrasound-Assisted Aftertreatments 25</p> <p>1.2.5.7 Advantages and Disadvantages of Ultrasound 25</p> <p>1.3 Microwave as Stimulus for the Textile Wet Processes 26</p> <p>1.3.1 Characterization of Microwaves 26</p> <p>1.3.2 Applications of Microwaves 26</p> <p>1.3.3 Microwave Ovens 27</p> <p>1.3.3.1 Working Principle of the Microwave Oven 27</p> <p>1.3.4 Microwaves Working Principle for Wet Processes in the Textile Industry 28</p> <p>1.3.5 Factors and Analyses that Highlight the Effects of Microwaves on Textile Wet Processes 29</p> <p>1.3.6 Eco-Friendly Microwave-Assisted Dyeing Process of Acrylic Knitted Fabrics 30</p> <p>1.3.6.1 Characterization of the Stages of the Eco-Friendly Microwave-Assisted Process 31</p> <p>1.3.6.2 Modifications of Acrylic Fibers under the Action of Microwaves 33</p> <p>1.4 Conclusions 38</p> <p>References 39</p> <p><b>2 Skincare Finishes to Textiles 45<br /></b><i>Angela Danila and Laura Chirila</i></p> <p>2.1 Introduction 45</p> <p>2.2 Types of Skincare Textiles 48</p> <p>2.2.1 Textiles with UV Protection Properties 48</p> <p>2.2.2 Textiles With Antimicrobial Properties 50</p> <p>2.2.3 Textiles with Anti-Cellulite Properties 51</p> <p>2.2.4 Textiles with Antioxidant Properties 52</p> <p>2.2.5 Textiles With Anti-Aging Properties 54</p> <p>2.2.6 Textiles With Moisturizing Properties 55</p> <p>2.2.7 Textiles With Flavoring Properties 57</p> <p>2.2.8 Textiles With Refreshing and Relaxing Properties 73</p> <p>2.3 Techniques for Skincare Compounds Embedding 74</p> <p>2.4 Techniques for Microparticles Applying on Textile Supports 76</p> <p>2.5 Conclusion 79</p> <p>References 79</p> <p><b>3 Recent Advances in Synthetic Dyes 91<br /></b><i>Suhail Ayoub Khan, Daud Hussain and Tabrez Alam Khan</i></p> <p>3.1 Introduction 91</p> <p>3.2 Synthetic Dyes in Textile Coloration 92</p> <p>3.3 Synthetic Dyes in Dye-Sensitized Solar Cells 99</p> <p>3.4 Synthetic Dyes in Liquid Crystal Display 102</p> <p>3.5 Synthetic Dyes in Fluorescent Sensors 105</p> <p>3.6 Synthetic Dyes in the Detection of G-Quadruplex DNA 106</p> <p>3.7 Conclusion 107</p> <p>References 107</p> <p><b>4 Natural Dye Extraction and Dyeing of Different Fibers: A Review 113<br /></b><i>Bota, Sanda and Indrie, Liliana</i></p> <p>4.1 Introduction 114</p> <p>4.2 Classification of Natural Dyes 116</p> <p>4.2.1 Sources of Natural Dye 117</p> <p>4.2.2 Classification According to Method of Application 117</p> <p>4.2.3 Based in Chemical Structure 118</p> <p>4.3 Color-Based Classification 122</p> <p>4.4 Dyeing With Natural Color From <i>Calendula offcinalis </i>124</p> <p>4.5 Extraction of Natural Dyes 125</p> <p>4.6 Dyeing Methods 127</p> <p>4.6.1 Mordanting Methods 127</p> <p>4.6.2 Dyeing Methods 130</p> <p>4.7 Conclusions 131</p> <p>References 131</p> <p><b>5 Airflow, Foam, and Supercritical Carbon Dioxide Dyeing Technologies 137<br /></b><i>Molla Tadesse Abate and Melkie Getnet Tadesse</i></p> <p>5.1 Introduction 137</p> <p>5.2 Airflow Dyeing Technology 138</p> <p>5.2.1 Airflow Dyeing Process 140</p> <p>5.2.2 Airflow Dyeing Steps 140</p> <p>5.2.3 Airflow Dyeing Machines 141</p> <p>5.2.4 Advantages of Airflow Dyeing 143</p> <p>5.3 Foam Dyeing Technology 145</p> <p>5.3.1 Principle of Foam Dyeing 146</p> <p>5.3.2 Foam and Properties 146</p> <p>5.3.3 Foam Processing Steps 147</p> <p>5.3.4 Foam Dyeing of Textiles 149</p> <p>5.3.5 Advantages of Foam Dyeing Technology 151</p> <p>5.4 Supercritical Carbon Dioxide Dyeing Technology 152</p> <p>5.4.1 Physicochemical Properties of scCO<sub>2</sub> 153</p> <p>5.4.2 The Supercritical CO<sub>2</sub> Dyeing Process 154</p> <p>5.4.3 Mechanism of Dyeing in scCO<sub>2</sub>—A Focus on Polyester 156</p> <p>5.4.4 Supercritical CO<sub>2</sub> Dyeing of Other Synthetic Fibers 157</p> <p>5.4.5 Supercritical CO<sub>2</sub> Dyeing of Natural Fibers 158</p> <p>5.4.6 Advantages of scCO<sub>2</sub> Dyeing Technology 158</p> <p>5.5 Conclusion 159</p> <p>References 160</p> <p><b>6 Colored Nanofiber Production: A Literature Review and Case Study 165<br /></b><i>Derman Vatansever Bayramol, Rıza Atav, Ahmet Özgür Ağırgan and Aylin Yıldız</i></p> <p>6.1 Introduction 166</p> <p>6.2 Electrospinning 170</p> <p>6.2.1 Historical Background 170</p> <p>6.2.2 Solution Electrospinning 172</p> <p>6.2.3 Melt Electrospinning 173</p> <p>6.3 Colored Nanofiber Production 175</p> <p>6.4 A Case Study: Silver Cyclohexane Mono Carboxylate: β-Cyclodextrine Inclusion Complex Doped Colored Functional Poly(Vinyl Alcohol) Nanoweb Production 177</p> <p>6.4.1 Introduction 177</p> <p>6.4.2 Material and Methods 179</p> <p>6.4.3 Results and Discussions 180</p> <p>6.4.3.1 Results Related to the Production of Ag-CC:β-CD Doped PVA Nanofibers 180</p> <p>6.4.3.2 Results Related to the Production of Ag-CC:β-CD Doped Colored PVA Nanofibers 183</p> <p>6.5 Conclusion 184</p> <p>Acknowledgements 185</p> <p>References 185</p> <p><b>7 The Effect of Plasma Treatment on Dyeing of Natural Fibers 191<br /></b><i>Maryam Naebe, Abu Naser Md Ahsanul Haque and Aminoddin Haji</i></p> <p>7.1 Introduction 191</p> <p>7.2 Types of Plasma 192</p> <p>7.3 Plasma Application on Natural Fibers 194</p> <p>7.3.1 Cotton 194</p> <p>7.3.2 Wool 200</p> <p>7.3.3 Other Natural Fibers 204</p> <p>7.4 Environmental Impact 206</p> <p>7.5 Conclusions 207</p> <p>References 208</p> <p><b>8 The Effect of Plasma Treatment on Dyeing of Synthetic Fibers 213<br /></b><i>Aminoddin Haji, Abu Naser Md Ahsanul Haque and Maryam Naebe</i></p> <p>8.1 Introduction 213</p> <p>8.2 Mechanism of Plasma Interaction With the Substrate 215</p> <p>8.3 Achievable Functionalities by Plasma Application 217</p> <p>8.3.1 Wettability 217</p> <p>8.3.2 Dyeing and Printability 217</p> <p>8.3.3 Desizing 217</p> <p>8.3.4 Cleaning and Sterilization 218</p> <p>8.3.5 Adhesion Enhancement 218</p> <p>8.3.6 Hydrophobicity 218</p> <p>8.3.7 Other Finishing Effects 218</p> <p>8.4 Application on Synthetic Fibers 219</p> <p>8.4.1 Polyester 219</p> <p>8.4.2 Nylon 223</p> <p>8.4.3 Polypropylene 225</p> <p>8.4.4 Acrylic 227</p> <p>8.5 The Current Standpoint of Plasma Application 227</p> <p>8.6 Conclusions 228</p> <p>References 228</p> <p><b>9 Ozone-Based Finishing of Textile Materials 235<br /></b><i>M. İbrahim Bahtiyari and Ayşegül Körlü</i></p> <p>9.1 Introduction 235</p> <p>9.1.1 Solutions that can be Applied for Sustainable and Environmentally Friendly Production 237</p> <p>9.2 Application of Ozone in Textile Finishing 239</p> <p>9.2.1 General Approach to Ozone Gas 239</p> <p>9.2.1.1 Physical and Chemical Features of Ozone 240</p> <p>9.2.1.2 Generation of the Ozone Gas 242</p> <p>9.2.2 Applications—Usages of Ozone Gas 243</p> <p>9.2.2.1 Ozone Applications in Pretreatment of Textile Materials 244</p> <p>9.2.2.2 Ozone Applications in Coloration of Textile Materials 251</p> <p>9.3 Conclusion with Future Expectation 257</p> <p>References 258</p> <p><b>10 Ultrasound-Based Wet Processes in Textile Industry 265<br /></b><i>Ayşegül Körlü and M. İbrahim Bahtiyari</i></p> <p>10.1 Introduction 265</p> <p>10.2 Application of Ultrasound in Textile Finishing 267</p> <p>10.2.1 Ultrasonic Pretreatment of Textile Materials 271</p> <p>10.2.1.1 Pretreatment of Cellulosic Fibers With the Help of Ultrasound 272</p> <p>10.2.1.2 Pretreatment of Protein-Based Fibers With the Help of Ultrasound 275</p> <p>10.2.1.3 Pretreatment of Synthetic Fibers With the Help of Ultrasound 276</p> <p>10.2.2 Ultrasonic Coloration of Textile Materials 277</p> <p>10.2.2.1 Ultrasound in Coloration of Cellulosic Fibers 278</p> <p>10.2.2.2 Ultrasound in Coloration of Protein-Based Fibers 280</p> <p>10.2.2.3 Ultrasound in Coloration of Synthetic Fibers 281</p> <p>10.2.3 Ultrasonic Finishing of Textile Materials 283</p> <p>10.2.3.1 Ultrasound in Finishing of Cellulosic Fibers 284</p> <p>10.2.3.2 Ultrasound in Finishing of Protein-Based Fibers 286</p> <p>10.2.3.3 Ultrasound in Finishing of Synthetic Fibers 287</p> <p>10.3 Conclusion With Future Expectation 289</p> <p>References 290</p> <p><b>11 Synthetic and Natural UV Protective Agents for Textile Finishing 301<br /></b><i>Anuradha Sankaran, Arpana Kamboj, Lata Samant and Seiko Jose</i></p> <p>11.1 Introduction 302</p> <p>11.2 Role of Textiles in Protective Clothing 303</p> <p>11.3 Factors Influencing Ultraviolet Radiation 305</p> <p>11.3.1 Ozone 305</p> <p>11.3.2 Cloud Cover 305</p> <p>11.3.3 Air Quality 306</p> <p>11.3.4 Altitude 306</p> <p>11.3.5 Latitude 306</p> <p>11.3.6 Surface Reflection 306</p> <p>11.3.7 Water Depth 307</p> <p>11.4 Susceptibility of Various Textiles on UV Radiations 307</p> <p>11.5 Method of Analysis and Standard 308</p> <p>11.5.1 Global Solar UV Index (UVI) 309</p> <p>11.5.2 Australian/New Zealand Standard AS/NZS 4399-2017 310</p> <p>11.6 Synthetic Organic Compounds for UV Protection of Textiles 310</p> <p>11.7 Ultraviolet Protection of Textiles From Natural Dyes 314</p> <p>11.8 Nanotechnological Interventions in UV Protective Textiles 315</p> <p>11.8.1 UV Protection of Nano-ZnO on Textiles 315</p> <p>11.8.2 UV Protection of Nano-TiO<sub>2</sub> on Textiles 316</p> <p>11.8.3 UV Protection of Nanosilver on Textiles 317</p> <p>11.9 Graphene as UV Blocker for Textiles 317</p> <p>11.10 Conclusion 319</p> <p>References 319</p> <p><b>12 Hydrophobic and Oleophobic Finishes for Textiles 325<br /></b><i>Laura Chirila and Angela Danila</i></p> <p>12.1 Introduction 326</p> <p>12.2 Textiles With Special Wettability Properties 328</p> <p>12.2.1 Surface Wetting Theories 328</p> <p>12.2.2 Liquid Repellent Coating Design Factors 331</p> <p>12.2.2.1 Surface Chemistry 332</p> <p>12.2.3 Surface Roughness 332</p> <p>12.3 Liquid Repellent Treatments of Textile Materials 332</p> <p>12.3.1 Coatings Based on C8 Fluorinated for Super/Hydrophobic and Super/Oleophobic Treatments of Textile Materials 334</p> <p>12.3.2 Sustainable Super/Hydrophobic and Super/Oleophobic Treatments for Textiles 334</p> <p>12.3.2.1 Coatings Based on ≤C6 Fluorinated for Super/Hydrophobic and Super/Oleophobic Treatments of Textile Materials 337</p> <p>12.3.2.2 Coatings Based on Non-Fluorinated for Super/Hydrophobic and Super/Oleophobic Treatments of Textile Materials 346</p> <p>12.4 Characterization Methods of Repellency Degree 361</p> <p>12.4.1 Contact Angle Measurement 361</p> <p>12.4.2 Standardized Tests 362</p> <p>12.5 Properties Desired of Liquid-Repellent Coatings 363</p> <p>12.6 Environmental Impact 363</p> <p>12.7 Conclusions 365</p> <p>References 367</p> <p><b>13 Flame Retardant Finish for Textile Fibers 373<br /></b><i>Nur-Us-Shafa Mazumder and Mohammad Tajul Islam</i></p> <p>13.1 Introduction 373</p> <p>13.2 Importance of Flame Retardant Finish 374</p> <p>13.3 Factors Affecting the Flammability of Textiles 375</p> <p>13.3.1 Fabric Construction 375</p> <p>13.3.2 Textile Fibers 376</p> <p>13.3.3 Types of Polymer 376</p> <p>13.4 Mechanism of Combustion of Textile Fibers 377</p> <p>13.5 Flame Retardants 378</p> <p>13.5.1 Mode of Action 379</p> <p>13.5.1.1 Gas-Phase Mode 379</p> <p>13.5.1.2 Condensed-Phase Mode 379</p> <p>13.5.1.3 Other Mode 380</p> <p>13.5.2 Flame Retardant Chemicals 380</p> <p>13.5.2.1 Halogen-Based Flame Retardants 381</p> <p>13.5.2.2 Phosphorus-Based Flame Retardants 381</p> <p>13.5.2.3 Nitrogen-Based Flame Retardants 383</p> <p>13.5.2.4 Silicon-Based Flame Retardants 384</p> <p>13.5.2.5 Nanocomposites 384</p> <p>13.6 Flame Retardant Finish for Different Polymers 386</p> <p>13.6.1 Flame Retardant Finish for Cellulosic Polymer 386</p> <p>13.6.1.1 Non-Durable Flame Retardant Finish for Cellulosic Polymer 387</p> <p>13.6.1.2 Durable Flame Retardant Finish for Cellulosic Polymer 388</p> <p>13.6.2 Flame Retardant Finish for Protein Polymer 391</p> <p>13.6.3 Flame Retardant Finish for Synthetic Polymer 392</p> <p>13.7 Different Flame Retardant Techniques 394</p> <p>13.7.1 Intumescent Flame Retardant Techniques 394</p> <p>13.7.2 Layer-by-Layer Flame Retardant Techniques 394</p> <p>13.7.3 Sol–Gel Flame Retardant Techniques 395</p> <p>13.8 Assessment of Flame Retardancy 396</p> <p>13.9 Application of Flame Retardant Textiles 396</p> <p>13.10 Environmental Issues and Sustainable Flame Retardants 400</p> <p>References 401</p> <p>Index 407</p>

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
213,99 €
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
36,99 €