Details

Non-Asymptotic Analysis of Approximations for Multivariate Statistics


Non-Asymptotic Analysis of Approximations for Multivariate Statistics


SpringerBriefs in Statistics

von: Yasunori Fujikoshi, Vladimir V. Ulyanov

53,49 €

Verlag: Springer
Format: PDF
Veröffentl.: 28.06.2020
ISBN/EAN: 9789811326165
Sprache: englisch

Dieses eBook enthält ein Wasserzeichen.

Beschreibungen

<p>This book presents recent non-asymptotic results for approximations in multivariate statistical analysis. The book is unique in its focus on results with the correct error structure for all the parameters involved. Firstly, it discusses the computable error bounds on correlation coefficients, MANOVA tests and discriminant functions studied in recent papers. It then introduces new areas of research in high-dimensional approximations for bootstrap procedures, Cornish–Fisher expansions, power-divergence statistics and approximations of statistics based on observations with random sample size. Lastly, it proposes a general approach for the construction of non-asymptotic bounds, providing relevant examples for several complicated statistics. It is a valuable resource for researchers with a basic understanding of multivariate statistics.</p>

<p>&nbsp;</p><p></p><p></p><p></p>
<div>1. Introduction.- 2. Correlation Coefficient.- 3. MANOVA Test Statistics.- 4. Linear and Quadratic Discriminant Functions.- 5. Bootstrap Confidence Sets.- 6. Gaussian Comparison.- 7. Cornish-Fisher Expansions.- 8 Approximations for Statistics Based on Random Sample Sizes.- 9. Power-divergence Statistics.- 10.General Approach to Construct Non-asymptotic Bounds.- 11 - Other Topics.- Index.</div>
<div>Fujikoshi, Yasunori, Hiroshima University, Higashi-Hiroshima, Japan</div><div><br></div><div>Ulyanov, Vladimir V., Moscow State University and HSE University, Moscow, Russia</div>
<p></p><p></p><div><p>Is the first book on non-asymptotic approximations and computable error bounds in multivariate analysis</p><p>Focuses on the errors in high-dimensional approximations as well as large sample approximations for classical and modern multivariate statistics</p>

<p>Suggests a general approach for construction of non-asymptotic bounds, illustrated by typical examples</p>

<p>&nbsp; </p>

&nbsp;<p></p><br></div>

Diese Produkte könnten Sie auch interessieren:

Modeling Uncertainty
Modeling Uncertainty
von: Moshe Dror, Pierre L'Ecuyer, Ferenc Szidarovszky
PDF ebook
236,81 €
Continuous Bivariate Distributions
Continuous Bivariate Distributions
von: N. Balakrishnan, Chin Diew Lai
PDF ebook
106,99 €
Nonlinear Regression with R
Nonlinear Regression with R
von: Christian Ritz, Jens Carl Streibig
PDF ebook
74,89 €