Details

Progress in Adhesion and Adhesives, Volume 6


Progress in Adhesion and Adhesives, Volume 6


Adhesion and Adhesives: Fundamental and Applied Aspects 1. Aufl.

von: K. L. Mittal

210,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 12.10.2021
ISBN/EAN: 9781119846697
Sprache: englisch
Anzahl Seiten: 912

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>With the voluminous research being published, it is difficult, if not impossible, to stay abreast of current developments in a given area. The review articles in this book consolidate information to provide an alternative way to follow the latest research activity and developments in adhesion science and adhesives.</b> <p>With the ever-increasing amount of research being published, it is a Herculean task to be fully conversant with the latest research developments in any field, and the arena of adhesion and adhesives is no exception. Thus, topical review articles provide an alternate and very efficient way to stay abreast of the state-of-the-art in many subjects representing the field of adhesion science and adhesives. <p>The 19 chapters in this Volume 6 follow the same order as the review articles originally published in RAA in the year 2020 and up to June 2021. The subjects of these 19 chapters fall in the following areas: <ul><li>Adhesives and adhesive joints</li> <li>Contact angle</li> <li>Reinforced polymer composites</li> <li>Bioadhesives</li> <li>Icephobic coatings</li> <li>Adhesives based on natural resources</li> <li>Polymer surface modification</li> <li>Superhydrophobic surfaces</li></ul> <p>The topics covered include: hot-melt adhesives; adhesively-bonded spar-wingskin joints; contact angle hysteresis; fiber/matrix adhesion in reinforced thermoplastic composites; bioadhesives in biomedical applications; mucoadhesive pellets for drug delivery applications; bio-inspired icephobic coatings; wood adhesives based on natural resources; adhesion in biocomposites; vacuum UV surface photo-oxidation of polymers and other materials; vitrimers and their relevance to adhesives; superhydrophobic surfaces by microtexturing; structural acrylic adhesives; mechanically durable water-repellent surfaces; mussel-inspired underwater adhesives; and cold atmospheric pressure plasma technology for modifying polymers. <p><b>Audience</b><br> This book will be valuable and useful to researchers and technologists in materials science, nanotechnology, physics, surface and colloid chemistry in multiple disciplines in academia, industry, various research institutes and other organizations.
<p>Preface xxi</p> <p><b>1 Hot-Melt Adhesives: Fundamentals, Formulations, and Applications: A Critical Review 1<br /></b><i>Swaroop Gharde, Gaurav Sharma and Balasubramanian Kandasubramanian</i></p> <p>1.1 Introduction to Hot-Melt Adhesives (HMAs) 2</p> <p>1.2 Formulation of Hot-Melt Adhesives 4</p> <p>1.2.1 Theories or Mechanisms of Adhesion 4</p> <p>1.2.1.1 Mechanical Interlocking Theory 4</p> <p>1.2.1.2 Electrostatic Theory 5</p> <p>1.2.1.3 Diffusion Theory 5</p> <p>1.2.1.4 Physical Adsorption or Wetting Theory 5</p> <p>1.2.1.5 Chemical Bonding 5</p> <p>1.2.2 Intermolecular Forces between Adhesives and Adherend 5</p> <p>1.2.3 Thermodynamic Model of Adhesion 6</p> <p>1.2.4 Bonded Joints 7</p> <p>1.2.5 Surface Preparation for HMA Application 8</p> <p>1.2.5.1 Solvent Degreasing 9</p> <p>1.2.5.2 Chemically-Active Surface 9</p> <p>1.3 Fundamental Aspects of Adhesive Behavior of HMAs 10</p> <p>1.3.1 Mechanical and Physical Behaviors 10</p> <p>1.3.2 Blending Behavior and the Effects of Other Ingredients 11</p> <p>1.3.3 Polymeric Behavior 12</p> <p>1.4 Preparation of HMAs Using Various Polymers 12</p> <p>1.4.1 HMAs by Grafting Acrylic and Crotonic Acids on Metallocene Ethylene-Octene Polymers 12</p> <p>1.4.1.1 Solution Grafting 13</p> <p>1.4.1.2 Melt Grafting 14</p> <p>1.4.1.3 Preparation of HMAs 14</p> <p>1.4.2 Cross-Linked Polyurethane Hot-Melt Adhesives (PUR-HMAs) 14</p> <p>1.4.3 Soybean Protein Isolate and Polycaprolactone Based HMAs (SPIP-HMAs) 15</p> <p>1.5 Mechanical Analysis of Hot-Melt Adhesives 16</p> <p>1.5.1 Fracture Mechanics of HMAs 16</p> <p>1.5.1.1 Fracture Energy Measurement 18</p> <p>1.5.2 Stress-Strain, and Frequency-Temperature Sweep Tests for Viscoelasticity 18</p> <p>1.6 Industrial Applications of Hot-Melt Adhesives 20</p> <p>1.6.1 Medical Applications 20</p> <p>1.6.2 Electronic Applications 21</p> <p>1.6.3 Anticorrosion Applications 21</p> <p>1.6.4 Food Packaging Applications 21</p> <p>1.6.5 Textile Applications 22</p> <p>1.7 Current Challenges and Future Scope of HMAs 22</p> <p>1.8 Summary 23</p> <p>Acknowledgment 24</p> <p>References 24</p> <p><b>2 Optimization of Adhesively Bonded Spar-Wingskin Joints of Laminated FRP Composites Subjected to Pull-Off Load: A Critical Review 29<br /></b><i>S. Rakshe, S. V. Nimje and S. K. Panigrahi</i></p> <p>2.1 Introduction 29</p> <p>2.2 Finite Element Analysis of SWJ 31</p> <p>2.2.1 Geometry and Configuration 31</p> <p>2.2.2 Finite Element Modeling 32</p> <p>2.2.3 Validation and Convergence Study 33</p> <p>2.3 Taguchi Method of Optimization 34</p> <p>2.3.1 Optimization of Material and Lamination Scheme 35</p> <p>2.3.2 Geometrical Parameter 36</p> <p>2.4 Results and Discussion 38</p> <p>2.4.1 Material and Lamination Scheme 38</p> <p>2.4.1.1 Analysis of Variance (ANOVA) 39</p> <p>2.4.2 Geometrical Parameter 41</p> <p>2.4.2.1 Analysis of Variance (ANOVA) 42</p> <p>2.5 Conclusions 44</p> <p>References 45</p> <p><b>3 Contact Angle Hysteresis – Advantages and Disadvantages: A Critical Review 47<br /></b><i>Andrew Terhemen Tyowua and Stephen Gbaoron Yiase</i></p> <p>3.1 Introduction 47</p> <p>3.2 Contact Angle and Hysteresis Measurement 49</p> <p>3.2.1 Theoretical Treatment of Static Contact Angles 51</p> <p>3.2.2 Modeling of Dynamic Contact Angles 53</p> <p>3.2.3 Modelling Contact Angle Hysteresis 57</p> <p>3.3 Advantages of Contact Angle Hysteresis 59</p> <p>3.4 Disadvantages of Contact Angle Hysteresis 59</p> <p>3.5 Summary 61</p> <p>3.6 Acknowledgements 62</p> <p>References 62</p> <p><b>4 Test Methods for Fibre/Matrix Adhesion in Cellulose Fibre-Reinforced Thermoplastic Composite Materials: A Critical Review 69<br /></b><i>J. Müssig and N. Graupner</i></p> <p>4.1 Introduction 70</p> <p>4.2 Terms and Definitions 70</p> <p>4.2.1 Fibres 71</p> <p>4.2.2 Fibre Bundle 71</p> <p>4.2.3 Equivalent Diameter 72</p> <p>4.2.4 Critical Length 72</p> <p>4.2.5 Aspect Ratio and Critical Aspect Ratio 72</p> <p>4.2.6 Single Element versus Collective 73</p> <p>4.2.7 Interface and Interphase 75</p> <p>4.2.8 Adhesion and Adherence 75</p> <p>4.2.9 Practical & Theoretical Fibre/Matrix Adhesion 75</p> <p>4.3 Test Methods for Fibre/Matrix Adhesion 76</p> <p>4.3.1 Overview 76</p> <p>4.3.2 Single Fibre/Single Fibre Bundle Tests 77</p> <p>4.3.2.1 Pull-Out Test 77</p> <p>4.3.2.2 Microbond Test 88</p> <p>4.3.3 Test Procedures for Fibre/Matrix Adhesion 91</p> <p>4.3.3.1 Pull-Out Test 92</p> <p>4.3.3.2 Microbond Test 93</p> <p>4.3.3.3 Evaluation of Characteristic Values from Pull-Out and Microbond Tests 94</p> <p>4.3.3.4 Fragmentation Test 98</p> <p>4.4 Comparison of IFSS Data 103</p> <p>4.5 Influence of Fibre Treatment on the IFSS 107</p> <p>4.6 Summary 118</p> <p>Acknowledgements 119</p> <p>References 119</p> <p><b>5 Bioadhesives in Biomedical Applications: A Critical Review 131<br /></b><i>Aishee Dey, Proma Bhattacharya and Sudarsan Neogi</i></p> <p>5.1 Introduction 131</p> <p>5.2 Theories of Bioadhesion 132</p> <p>5.2.1 Factors Affecting Bioadhesion 134</p> <p>5.3 Different Polymers Used as Bioadhesives 134</p> <p>5.3.1 Collagen-Based Bioadhesives 135</p> <p>5.3.2 Chitosan-Based Bioadhesives 137</p> <p>5.3.3 Albumin-Based Bioadhesives 138</p> <p>5.3.4 Dextran-Based Bioadhesives 139</p> <p>5.3.5 Gelatin-Based Bioadhesives 140</p> <p>5.3.6 Poly(ethylene glycol)-Based Bioadhesives 142</p> <p>5.3.7 Poly(acrylic acid)-Based Bioadhesives 142</p> <p>5.3.8 Poly(lactic-co-glycolic acid) (PLGA)-Based Bioadhesives 145</p> <p>5.4 Summary 147</p> <p>References 148</p> <p><b>6 Mucoadhesive Pellets for Drug Delivery Applications: A Critical Review 155<br /></b><i>Inderbir Singh, Gayatri Devi, Bibhuti Ranjan Barik, Anju Sharma and Loveleen Kaur</i></p> <p>6.1 Introduction 155</p> <p>6.2 Mucoadhesive Polymers 157</p> <p>6.3 Pellets 159</p> <p>6.3.1 Preparation and Evaluation of Pellets 160</p> <p>6.3.2 Mucoadhesive Pellets for Drug Delivery Applications 161</p> <p>6.4 Summary and Prospects 166</p> <p>Conflict of Interest 166</p> <p>References 166</p> <p><b>7 Bio-Inspired Icephobic Coatings for Aircraft Icing Mitigation: A Critical Review 171<br /></b><i>Liqun Ma, Zichen Zhang, Linyue Gao, Yang Liu and Hui Hu</i></p> <p>7.1 Introduction 172</p> <p>7.2 The State-of-the-Art Icephobic Coatings/Surfaces 174</p> <p>7.2.1 Lotus-Leaf-Inspired Superhydrophobic Surfaces (SHS) with Micro-/Nano-Scale Surface Textures 176</p> <p>7.2.2 Pitcher-Plant-Inspired Slippery Liquid-Infused Porous Surfaces (SLIPS) 177</p> <p>7.3 Impact Icing Process Pertinent to Aircraft Inflight Icing Phenomena 179</p> <p>7.4 Preparation of Typical SHS and SLIPS Coatings/Surfaces 181</p> <p>7.5 Measurements of Ice Adhesion Strengths on Different Icephobic Coatings/Surfaces 182</p> <p>7.6 Icing Tunnel Testing to Evaluate the Icephobic Coatings/Surfaces for Impact Icing Mitigation 184</p> <p>7.7 Characterization of Rain Erosion Effects on the Icephobic Coatings 189</p> <p>7.8 Summary and Conclusions 196</p> <p>Acknowledgments 198</p> <p>References 198</p> <p><b>8 Wood Adhesives Based on Natural Resources: A Critical Review Part I. Protein-Based Adhesives 203<br /></b><i>Manfred Dunky</i></p> <p>List of Abbreviations 203</p> <p>8.1 Overview and Challenges for Wood Adhesives Based on Natural Resources 205</p> <p>8.1.1 Definition of Wood Adhesives Based on Natural Resources 205</p> <p>8.1.2 Motivation to Use Wood Adhesives Based on Natural Resources 207</p> <p>8.1.3 Combined Use of Synthetic and Naturally-Based Wood Adhesives 208</p> <p>8.1.4 Review Articles on Wood Adhesives Based on Natural Resources 209</p> <p>8.1.5 Motivation for this Review Article in Four Parts in the Journal “Reviews of Adhesion and Adhesives” 211</p> <p>8.1.6 Overview on Wood Adhesives Based on Natural Resources 212</p> <p>8.1.7 Requirements, Limitations, and Opportunities for Wood Adhesives Based on Natural Resources 214</p> <p>8.1.8 Synthetic and Natural Crosslinkers 214</p> <p>8.1.9 Future of Wood Adhesives Based on Natural Resources 219</p> <p>8.2 Protein-Based Adhesives 222</p> <p>8.2.1 Introduction 222</p> <p>8.2.1.1 Chemical Structure of Proteins 223</p> <p>8.2.1.2 Proteinaceous Feedstock 224</p> <p>8.2.1.3 Wood Bonding with Proteins 224</p> <p>8.2.2 Plant-Based Proteins 228</p> <p>8.2.2.1 Overview on Plant-Based Protein Sources and Types 228</p> <p>8.2.2.2 Soy Proteins 228</p> <p>8.2.2.3 Soy Protein as Wood Adhesive 239</p> <p>8.2.2.4 Thermal Treatment of Soy Proteins 243</p> <p>8.2.3 Animal-Based Proteins 246</p> <p>8.2.3.1 Types and Sources of Animal-Based Proteins 246</p> <p>8.2.3.2 Mussels (Marine) Proteins 246</p> <p>8.2.3.3 Slaughterhouse Waste as Source of Proteins 257</p> <p>8.2.3.4 Proteins from Specified Risk Materials (SRMs) 260</p> <p>8.2.4 Properties of Protein-Based Adhesives 261</p> <p>8.2.5 Denaturation and Modification of Proteins 261</p> <p>8.2.5.1 Modification of Proteins 265</p> <p>8.2.5.2 Crosslinking of Proteins 265</p> <p>8.2.6 Proteins in Combination with Other Natural Adhesives and Natural Crosslinkers 286</p> <p>8.2.7 Proteins in Combination with Synthetic Adhesive Resins and Crosslinkers 286</p> <p>8.2.8 Application of Protein-Based Wood Adhesives 286</p> <p>8.3 Summary 316</p> <p>General Literature (Overview and Review Articles) for Wood Adhesives Based on Natural Resources 316</p> <p>Protein-Based Adhesives 317</p> <p>Plant Proteins (including Soy) 318</p> <p>Animal Proteins and Other Sources 318</p> <p>References 318</p> <p><b>9 Wood Adhesives Based on Natural Resources: A Critical Review Part II. Carbohydrate-Based Adhesives 337<br /></b><i>Manfred Dunky</i></p> <p>List of Abbreviations 337</p> <p>9.1 Types and Sources of Carbohydrates Used as Wood Adhesives 338</p> <p>9.2 Modification of Starch for Possible Use as Wood Adhesive 348</p> <p>9.3 Citric Acid as Naturally-Based Modifier and Co-Reactant 348</p> <p>9.4 Combination and Crosslinking of Carbohydrates with Natural and Synthetic Components 348</p> <p>9.5 Degradation and Repolymerization of Carbohydrates 348</p> <p>9.6 Summary 373</p> <p>General Literature (Overview and Review Articles) for Carbohydrate-Based Adhesives 373</p> <p>References 373</p> <p><b>10 Wood Adhesives Based on Natural Resources: A Critical Review Part III. Tannin- and Lignin-Based Adhesives 383<br /></b><i>Manfred Dunky</i></p> <p>List of Abbreviations 384</p> <p>10.1 Introduction 385</p> <p>10.2 Tannin-Based Adhesives 385</p> <p>10.2.1 Chemistry of Condensed Tannins 386</p> <p>10.2.2 Types of Condensed Tannins 390</p> <p>10.2.3 Extraction, Purification, and Modification Methods for Tannins 390</p> <p>10.2.4 Hardening and Crosslinking of Tannins 400</p> <p>10.2.5 Hardening of Tannins by Hexamethylenetetramine (Hexamine) 418</p> <p>10.2.6 Autocondensation of Tannins 419</p> <p>10.2.7 Combination of Tannins with Natural Components 421</p> <p>10.2.8 Combination of Tannins with Synthetic Components and Crosslinkers 421</p> <p>10.3 Lignin-Based Adhesives 421</p> <p>10.3.1 Chemistry and Structure of Lignin 430</p> <p>10.3.2 Lignin as Adhesive 432</p> <p>10.3.3 Analysis of Molecular Structure 437</p> <p>10.3.4 Modification of Lignin 437</p> <p>10.3.5 Lignin as Sole Adhesive and Chemical Activation of the Wood Surface 452</p> <p>10.3.6 Laccase Induced Activation of Lignin 452</p> <p>10.3.7 Pre-Methylolation of Lignin 469</p> <p>10.3.8 Incorporation of Lignin into PF Resins 481</p> <p>10.3.9 Reactions of Lignin With Various Aldehydes and Other Naturally-Based Components 481</p> <p>10.3.10 Reaction of Lignin With Synthetic Components and Crosslinkers 481</p> <p>10.4 Summary 481</p> <p>General Literature (Overview and Review Articles) for Tannin and Lignin 499</p> <p>References 501</p> <p><b>11 Adhesion in Biocomposites: A Critical Review 531<br /></b><i>Siji K. Mary, Merin Sara Thomas, Rekha Rose Koshy, Prasanth K.S. Pillai, Laly A. Pothan and SabuThomas</i></p> <p>11.1 Introduction 531</p> <p>11.2 Biocomposite Processing Methods 533</p> <p>11.3 Factors Enhancing Adhesion Property in Biocomposites 536</p> <p>11.3.1 Effect of Chemical Modification 537</p> <p>11.3.2 Effect of Enzymatic Modification 539</p> <p>11.3.3 Effect of Physical Modification 539</p> <p>11.4 Physical and Chemical Characterization 542</p> <p>11.5 Adhesion in Polymer Biocomposites with Specific Applications 545</p> <p>11.5.1 Biomedical Applications 546</p> <p>11.5.2 Dye Adsorption and Removal 547</p> <p>11.5.3 Automotive Applications 548</p> <p>11.6 Summary 549</p> <p>References 549</p> <p><b>12 Vacuum UV Surface Photo-Oxidation of Polymeric and Other Materials for Improving Adhesion: A Critical Review 559<br /></b><i>Gerald A. Takacs, Massoud J. Miri and Timothy Kovach</i></p> <p>12.1 Introduction 559</p> <p>12.2 Vacuum UV Photo-Oxidation Process 561</p> <p>12.2.1 VUV Background 561</p> <p>12.2.2 VUV Radiation 561</p> <p>12.2.2.1 Emission from Excited Atoms 561</p> <p>12.2.2.2 Emission from High Pressure Rare Gas Plasmas 563</p> <p>12.2.2.3 Emission from Rare-Gas Halides and Halogen Dimers 564</p> <p>12.2.3 VUV Optical Filters 564</p> <p>12.2.4 Penetration Depths of VUV Radiation in Polymers 565</p> <p>12.2.5 Analytical Methods for Surface Analysis 565</p> <p>12.2.6 VUV Photochemistry of Oxygen 565</p> <p>12.2.7 Reaction of O Atoms and Ozone with a Polymer Surface 566</p> <p>12.3 Adhesion to VUV Surface Photo-Oxidized Polymers 567</p> <p>12.3.1 Fluoropolymers 567</p> <p>12.3.2 Nafion<sup>®</sup> 568</p> <p>12.3.3 Polyimides 569</p> <p>12.3.4 Metal-Containing Polymers 569</p> <p>12.3.5 Polyethylene (PE) 570</p> <p>12.3.6 Polystyrene 571</p> <p>12.3.7 Other Polymers 571</p> <p>12.3.7.1 Polypropylene (PP) 571</p> <p>12.3.7.2 Poly(ethylene terephthalate) (PET) 571</p> <p>12.3.7.3 Poly(ethylene 2,6-naphthalate) (PEN) 571</p> <p>12.3.7.4 Cyclo-Olefin Polymers 572</p> <p>12.3.7.5 Polybenzimidazole (PBI) 572</p> <p>12.4 Applications of VUV Surface Photo-Oxidation to Other Materials 573</p> <p>12.4.1 Carbon Nanotubes and Diamond 573</p> <p>12.4.2 Metal Oxides 574</p> <p>12.5 Prospects 575</p> <p>12.5.1 Sustainable Polymers 575</p> <p>12.6 Summary 576</p> <p>References 576</p> <p><b>13 Bio- and Water-Based Reversible Covalent Bonds Containing Polymers (Vitrimers) and Their Relevance to Adhesives – A Critical Review 587<br /></b><i>Natanel Jarach, Racheli Zuckerman, Naum Naveh, Hanna Dodiuk and Samuel Kenig</i></p> <p>List of Abbreviations 587</p> <p>13.1 Introduction 588</p> <p>13.1.1 RCBPs Classification 589</p> <p>13.1.2 Reversible Bonds 590</p> <p>13.1.2.1 General Reversible Covalent Bonds 590</p> <p>13.1.2.2 Dynamic Reversible Covalent Bonds 590</p> <p>13.1.3 RCBPs Applications 591</p> <p>13.1.3.1 Recyclability 591</p> <p>13.1.3.2 Self-Healing Materials 592</p> <p>13.1.3.3 Shape-Memory Materials 592</p> <p>13.1.3.4 Smart Composites 593</p> <p>13.1.3.5 Adhesives 593</p> <p>13.1.3.6 Dynamic Hydrogels and Biomedical Materials 594</p> <p>13.2 Bio-Based RCBPs 595</p> <p>13.2.1 Bio-Based Polymers 595</p> <p>13.2.1.1 Classification of Bio-Based Polymers 596</p> <p>13.2.1.2 Common Synthetic Bio-Based Polymers 596</p> <p>13.2.2 Bio-Based RCBPs 599</p> <p>13.2.2.1 Bio-Based DA RCBPs 600</p> <p>13.2.2.2 Bio-Based Acylhydrazone-Containing RCBPs 601</p> <p>13.2.2.3 Bio-Based Imine (Schiff-Base)-Containing RCBPs 601</p> <p>13.2.2.4 Bio-Based β-Hydroxy Ester Containing RCBPs 604</p> <p>13.2.2.5 Bio-Based Disulfide-Containing RCBPs 606</p> <p>13.3 Water-Based RCBPs 607</p> <p>13.3.1 Solvents in Polymer Industry 607</p> <p>13.3.1.1 Organic and Inorganic Solvents Used in RCBPs Synthesis 608</p> <p>13.3.1.2 Water-Based Polymers 608</p> <p>13.3.2 Water-Based RCBPs 609</p> <p>13.3.2.1 Acylhydrazone-Containing Water-Based RCBPs 609</p> <p>13.3.2.2 Schiff-Base-Containing Water-Based RCBPs 609</p> <p>13.4 Summary 611</p> <p>13.5 Authors Contributions 611</p> <p>13.6 Funding 611</p> <p>13.7 Conflict of Interest 611</p> <p>References 612</p> <p><b>14 Superhydrophobic Surfaces by Microtexturing: A Critical Review 621<br /></b><i>Anustup Chakraborty, Alan T. Mulroney and Mool C. Gupta</i></p> <p>14.1 Introduction 622</p> <p>14.1.1 Background 622</p> <p>14.1.2 State-of-the-Art 626</p> <p>14.1.2.1 Microtexture Geometry 627</p> <p>14.1.2.2 Ice Adhesion 627</p> <p>14.1.2.3 Optical Transparency 628</p> <p>14.1.2.4 Anti-Condensation Surfaces 628</p> <p>14.2 Fabrication of Microtextured Surfaces 628</p> <p>14.2.1 Surface Materials 628</p> <p>14.2.2 Methods of Fabrication of Superhydrophobic Surfaces 630</p> <p>14.2.2.1 Plasma Treatment 630</p> <p>14.2.2.2 Laser Ablation 631</p> <p>14.2.2.3 Chemical Etching 632</p> <p>14.3 Properties of Microtextured Surfaces 634</p> <p>14.3.1 Antifogging 634</p> <p>14.3.2 Antibacterial 634</p> <p>14.3.3 Antireflection 634</p> <p>14.3.4 Self-Cleaning 636</p> <p>14.3.5 Effect of Temperature on Surface Properties 636</p> <p>14.4 Applications 639</p> <p>14.4.1 Anti-Icing 639</p> <p>14.4.2 Drag Reduction 640</p> <p>14.4.3 Anti-Corrosion 641</p> <p>14.4.4 Solar Cells 641</p> <p>14.4.5 Water-Repellent Textiles 641</p> <p>14.5 Future Outlook 643</p> <p>Acknowledgments 644</p> <p>References 644</p> <p><b>15 Structural Acrylic Adhesives: A Critical Review 651<br /></b><b><i>D.A. Aronovich and L.B. Boinovich</i></b></p> <p>15.1 Introduction 651</p> <p>15.2 Compositions and Chemistries 653</p> <p>15.2.1 Base Monomer 654</p> <p>15.2.2 Thickeners and Elastomeric Components 656</p> <p>15.2.3 Adhesive Additives 663</p> <p>15.2.4 Initiators 665</p> <p>15.2.5 Aerobically Curable Systems 670</p> <p>15.2.6 Fillers 671</p> <p>15.3 Physico-Mechanical Properties of SAAs 673</p> <p>15.4 Adhesives for Low Surface Energy Materials 677</p> <p>15.4.1 Initiators Based on Trialkylboranes 677</p> <p>15.4.2 Alternative Types of Boron-Containing Initiators 686</p> <p>15.4.3 Additives Modifying the Curing Stage 687</p> <p>15.4.4 Hybrid SAAs 690</p> <p>15.5 Comparison of the Properties of SAAs and Other Reactive Adhesives 693</p> <p>15.6 Summary and Outlook 698</p> <p>References 698</p> <p><b>16 Current Progress in Mechanically Durable Water-Repellent Surfaces: A Critical Review 709<br /></b><b><i>Philip Brown and Prantik Mazumder</i></b></p> <p>16.1 Introduction 709</p> <p>16.2 Fundamentals of Superhydrophobicity and SLIPs 710</p> <p>16.2.1 Intermolecular Forces and Wetting 710</p> <p>16.2.2 Young’s Contact Angle and Surface Chemistry Limitation 712</p> <p>16.2.3 Superhydrophobicity by Texturing 715</p> <p>16.2.4 Hysteresis and Tilt Angle 717</p> <p>16.2.5 Slippery Liquid-Infused Porous Surfaces (SLIPs) 719</p> <p>16.3 Techniques to Achieve Water-Repellent Surfaces 720</p> <p>16.3.1 Superhydrophobic Composite Coatings 720</p> <p>16.3.2 Superhydrophobic Textured Surfaces 724</p> <p>16.3.3 Liquid-Impregnated Surfaces/SLIPs 728</p> <p>16.4 Durability Testing 729</p> <p>16.5 Future Trends 732</p> <p>16.6 Summary 734</p> <p>References 734</p> <p><b>17 Mussel-Inspired Underwater Adhesives- from Adhesion Mechanisms to Engineering Applications: A Critical Review 739<br /></b><i>Yanfei Ma, Bozhen Zhang, Imri Frenkel, Zhizhi Zhang, Xiaowei Pei, Feng Zhou and Ximin He</i></p> <p>17.1 Introduction 740</p> <p>17.2 Adhesion Mechanisms of Mussel and the Catechol Chemistry 741</p> <p>17.2.1 Hydrogen Bonding and Metal Coordination 742</p> <p>17.2.2 Hydrophobic Interaction 743</p> <p>17.2.3 Cation/Anion/π-π Interactions 743</p> <p>17.2.4 The Flexibility of the Molecular Chain 744</p> <p>17.3 Catechol-Functionalized Adhesive Materials 744</p> <p>17.3.1 Permanent/High-Strength Adhesives 745</p> <p>17.3.2 Temporary/Smart Adhesives 748</p> <p>17.3.2.1 pH-Responsive Adhesives 748</p> <p>17.3.2.2 Electrically Responsive Adhesives 750</p> <p>17.3.2.3 Thermally Responsive Adhesives 750</p> <p>17.3.2.4 Photo-Responsive Adhesives 750</p> <p>17.3.3 Applications 751</p> <p>17.4 Summary and Outlook 753</p> <p>References 754</p> <p><b>18 Wood Adhesives Based on Natural Resources: A Critical Review Part IV. Special Topics 761<br /></b><i>Manfred Dunky</i></p> <p>List of Abbreviations 762</p> <p>18.1 Liquified Wood 765</p> <p>18.2 Pyrolysis of Wood 769</p> <p>18.3 Replacement of Formaldehyde in Resins 772</p> <p>18.4 Unsaturated Oil Adhesives 791</p> <p>18.5 Natural Polymers 793</p> <p>18.5.1 Poly(lactic acid) (PLA) 793</p> <p>18.5.2 Natural Rubber 795</p> <p>18.6 Poly(hydroxyalkanoate)s (PHAs) 796</p> <p>18.7 Thermoplastic Adhesives Based on Natural Resources 797</p> <p>18.7.1 Polyurethanes (PURs) 798</p> <p>18.7.2 Polyamides (PAs) 806</p> <p>18.7.3 Epoxies 808</p> <p>18.8 Cellulose Nanocrystals (CNCs) and Cellulose Nanofibrils (CNFs) 808</p> <p>18.8.1 Cellulose Nanofibrils (CNFs) as Sole Adhesives 810</p> <p>18.8.2 Cellulose Nanofibrils as Components of Adhesives 812</p> <p>18.9 Cashew Nut Shell Liquid (CNSL) 812</p> <p>18.10 Summary 819</p> <p>General Literature (Overview and Review Articles) for Wood Adhesives Based on Natural Resources 820</p> <p>References 820</p> <p><b>19 Cold Atmospheric Pressure Plasma Technology for Modifying Polymers to Enhance Adhesion: A Critical Review 841<br /></b><i>Hom Bahadur Baniya, Rajesh Prakash Guragain and Deepak Prasad Subedi</i></p> <p>19.1 Introduction 842</p> <p>19.2 Atmospheric Pressure Plasma Discharge 844</p> <p>19.2.1 Corona Discharge 844</p> <p>19.2.2 Dielectric Barrier Discharge (DBD) 845</p> <p>19.2.3 Cold Atmospheric Pressure Plasma Jet (CAPPJ) 845</p> <p>19.2.4 Polymer Surface Modification by CAPPJ 845</p> <p>19.3 Experimental Setup for the Generation of Cold Atmospheric Pressure Plasma Jet 846</p> <p>19.4 Methods and Materials for Surface Modification of Polymers 847</p> <p>19.5 Direct Method for the Determination of Temperature of Cold Atmospheric Pressure Plasma Jet (CAPPJ) 848</p> <p>19.6 Results and Discussion 848</p> <p>19.6.1 Temperature Determination of Cold Atmospheric Pressure Plasma Jet (CAPPJ) 848</p> <p>19.6.2 Electrical Characterization of the CAPPJ 849</p> <p>19.6.2.1 Power Balance Method 849</p> <p>19.6.2.2 Current Density Method 850</p> <p>19.6.2.3 Determination of Energy Dissipation in the Cold Plasma Discharge per Cycle by the Lissajous Figure Method 851</p> <p>19.6.3 Optical Characterization of CAPPJ 852</p> <p>19.6.3.1 Line Intensity Ratio Method 852</p> <p>19.6.3.2 Stark Broadening Method 856</p> <p>19.6.3.3 Boltzmann Plot Method 858</p> <p>19.6.3.4 Determination of the Rotational Temperature 859</p> <p>19.6.3.5 Determination of the Vibrational Temperature 860</p> <p>19.7 Surface Characterization/Adhesion Property of Polymers 862</p> <p>19.7.1 Contact Angle Measurements and Surface Free Energy Determination 862</p> <p>19.7.1.1 Poly (ethylene terephthalate) (PET) 862</p> <p>19.7.1.2 Polypropylene (PP) 864</p> <p>19.7.1.3 Polyamide (PA) 867</p> <p>19.7.1.4 Polycarbonate (PC) 869</p> <p>19.7.2 FTIR Analysis 871</p> <p>19.7.2.1 Fourier Transform Infrared (FTIR) Analysis of PET 871</p> <p>19.7.2.2 Fourier Transform Infrared (FTIR) Analysis of PP 872</p> <p>19.7.3 SEM Analysis 872</p> <p>19.7.3.1 SEM Images of the Control and APPJ Treated PET 872</p> <p>19.7.3.2 SEM Images of the Control and APPJ Treated PP 872</p> <p>19.8 Summary 873</p> <p>Acknowledgements 874</p> <p>Data Availability 874</p> <p>Conflict of Interest 874</p> <p>References 874</p>
<p><b>Kashmiri Lal Mittal</b> was employed by the IBM Corporation from 1972 through 1993. Currently, he is teaching and consulting worldwide in the broad areas of adhesion as well as surface cleaning. He has received numerous awards and honors including the title of doctor<i> honoris causa</i> from Maria Curie-Skłodowska University, Lublin, Poland. He is the editor of more than 140 books dealing with adhesion measurement, adhesion of polymeric coatings, polymer surfaces, adhesive joints, adhesion promoters, thin films, polyimides, surface modification surface cleaning, and surfactants. Dr. Mittal is also the Founding Editor of the journal Reviews of <i>Adhesion and Adhesives.</i></p>
<p><b>With the voluminous research being published, it is difficult, if not impossible, to stay abreast of current developments in a given area. The review articles in this book consolidate information to provide an alternative way to follow the latest research activity and developments in adhesion science and adhesives.</b></p> <p>With the ever-increasing amount of research being published, it is a Herculean task to be fully conversant with the latest research developments in any field, and the arena of adhesion and adhesives is no exception. Thus, topical review articles provide an alternate and very efficient way to stay abreast of the state-of-the-art in many subjects representing the field of adhesion science and adhesives. <p>The 19 chapters in this Volume 6 follow the same order as the review articles originally published in RAA in the year 2020 and up to June 2021. The subjects of these 19 chapters fall in the following areas: <ul><li>Adhesives and adhesive joints</li> <li>Contact angle</li> <li>Reinforced polymer composites</li> <li>Bioadhesives</li> <li>Icephobic coatings</li> <li>Adhesives based on natural resources</li> <li>Polymer surface modification</li> <li>Superhydrophobic surfaces</li></ul> <p>The topics covered include: hot-melt adhesives; adhesively-bonded spar-wingskin joints; contact angle hysteresis; fiber/matrix adhesion in reinforced thermoplastic composites; bioadhesives in biomedical applications; mucoadhesive pellets for drug delivery applications; bio-inspired icephobic coatings; wood adhesives based on natural resources; adhesion in biocomposites; vacuum UV surface photo-oxidation of polymers and other materials; vitrimers and their relevance to adhesives; superhydrophobic surfaces by microtexturing; structural acrylic adhesives; mechanically durable water-repellent surfaces; mussel-inspired underwater adhesives; and cold atmospheric pressure plasma technology for modifying polymers. <p><b>Audience</b><br> This book will be valuable and useful to researchers and technologists in materials science, nanotechnology, physics, surface and colloid chemistry in multiple disciplines in academia, industry, various research institutes and other organizations.

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
213,99 €
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
36,99 €