Details

Spectrum Sharing


Spectrum Sharing

The Next Frontier in Wireless Networks
IEEE Press 1. Aufl.

von: Constantinos B. Papadias, Tharmalingam Ratnarajah, Dirk T. M. Slock

119,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 06.04.2020
ISBN/EAN: 9781119551515
Sprache: englisch
Anzahl Seiten: 456

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Combines the latest trends in spectrum sharing, both from a research and a standards/regulation/experimental standpoint</b></p> <p>Written by noted professionals from academia, industry, and research labs, this unique book provides a comprehensive treatment of the principles and architectures for spectrum sharing in order to help with the existing and future spectrum crunch issues. It presents readers with the most current standardization trends, including CEPT / CEE, eLSA, CBRS, MulteFire, LTE-Unlicensed (LTE-U), LTE WLAN integration with Internet Protocol security tunnel (LWIP), and LTE/Wi-Fi aggregation (LWA), and offers substantial trials and experimental results, as well as system-level performance evaluation results. The book also includes a chapter focusing on spectrum policy reinforcement and another on the economics of spectrum sharing.</p> <p>Beginning with the historic form of cognitive radio,<i> Spectrum Sharing: The Next Frontier in Wireless Networks</i> continues with current standardized forms of spectrum sharing, and reviews all of the technical ingredients that may arise in spectrum sharing approaches. It also looks at policy and implementation aspects and ponders the future of the field. White spaces and data base-assisted spectrum sharing are discussed, as well as the licensed shared access approach and cooperative communication techniques. The book also covers reciprocity-based beam forming techniques for spectrum sharing in MIMO networks; resource allocation for shared spectrum networks; large scale wireless spectrum monitoring; and much more.</p> <ul> <li>Contains all the latest standardization trends, such as CEPT / ECC, eLSA, CBRS, MulteFire, LTE-Unlicensed (LTE-U), LTE WLAN integration with Internet Protocol security tunnel (LWIP) and LTE/Wi-Fi aggregation (LWA)</li> <li>Presents a number of emerging technologies for future spectrum sharing (collaborative sensing, cooperative communication, reciprocity-based beamforming, etc.), as well as novel spectrum sharing paradigms (e.g. in full duplex and radar systems)</li> <li>Includes substantial trials and experimental results, as well as system-level performance evaluation results</li> <li>Contains a dedicated chapter on spectrum policy reinforcement and one on the economics of spectrum sharing</li> <li>Edited by experts in the field, and featuring contributions by respected professionals in the field world wide</li> </ul> <p><i>Spectrum Sharing: The Next Frontier in Wireless Networks</i> is highly recommended for graduate students and researchers working in the areas of wireless communications and signal processing engineering. It would also benefit radio communications engineers and practitioners.</p> <p> </p>
<p>About the Editors xvii</p> <p>List of Contributors xxi</p> <p>Preface xxv</p> <p>Abbreviations xxix</p> <p><b>1 Introduction: From Cognitive Radio to Modern Spectrum Sharing </b><b>1<br /></b><i>Constantinos B. Papadias, Tharmalingam Ratnarajah, and Dirk T.M. Slock</i></p> <p>1.1 A Brief History of Spectrum Sharing 1</p> <p>1.2 Background 3</p> <p>1.3 Book overview 5</p> <p>1.4 Summary 14</p> <p><b>2 Regulation and Standardization Activities Related to Spectrum Sharing </b><b>17<br /></b><i>Markus Mueck, María Dolores (Lola) Pérez Guirao, Rao Yallapragada, and Srikathyayani Srikanteswara</i></p> <p>2.1 Introduction 17</p> <p>2.2 Standardization 19</p> <p>2.2.1 Licensed Shared Access 19</p> <p>2.2.2 Evolved Licensed Shared Access 21</p> <p>2.2.3 Citizen Broadband Radio System 24</p> <p>2.2.4 CBRS Alliance 25</p> <p>2.3 Regulation 28</p> <p>2.3.1 European Conference of Postal and Telecommunications Administrations 28</p> <p>2.3.2 Federal Communications Commission 29</p> <p>2.3.3 A Comparison: (e)LSA vs CBRS Regulation Framework 30</p> <p>2.3.4 Conclusion 31</p> <p>References 32</p> <p><b>3 White Spaces and Database-assisted Spectrum Sharing </b><b>35<br /></b><i>Andrew Stirling</i></p> <p>3.1 Introduction 35</p> <p>3.2 Demand for Spectrum Outstrips Supply 36</p> <p>3.2.1 Making Room for New Wireless Technology 36</p> <p>3.2.2 Unused Spectrum 37</p> <p>3.3 Three-tier Access Model 38</p> <p>3.3.1 Secondary Users: Exploiting Gaps left by Primary Users 39</p> <p>3.3.2 Passive Users: Vulnerable to Transmissions in White Space Frequencies 39</p> <p>3.3.3 Opportunistic Spectrum Users 40</p> <p>3.4 What is Efficient Use of Spectrum? 40</p> <p>3.4.1 Broadcasters prefer Large Coverage Areas with Lower Spectrum Reuse 41</p> <p>3.4.2 ISPs Respond to Growing Bandwidth Demand from Subscribers 41</p> <p>3.4.3 Protection of Primary Users Defines the Scope for Sharing 42</p> <p>3.5 Tapping Unused Capacity: the Evolution of Spectrum Sharing 43</p> <p>3.5.1 Traditional Coordination is a Slow and Expensive Process 44</p> <p>3.5.2 License-exempt Access as the Default Spectrum Sharing Mechanism 44</p> <p>3.5.3 DSA offers Lower Friction and more Scalability 45</p> <p>3.5.3.1 Early days of DSA 46</p> <p>3.5.3.2 CR: Towards Flexible, Adaptive, Ad Hoc Access 46</p> <p>3.5.4 Spectrum Databases are Preferred by Regulators 47</p> <p>3.6 Determining which Frequencies are Available to Share: Technology 48</p> <p>3.6.1 CR: Its Original Sense 48</p> <p>3.6.2 DSA is more Pragmatic and Immediately Applicable 48</p> <p>3.6.3 Spectrum Sensing 48</p> <p>3.6.3.1 Hidden Nodes: Limiting the Scope/Certainty of Sensing 49</p> <p>3.6.3.2 Overcoming the Hidden Node Problem: a Cooperative Approach 49</p> <p>3.6.4 Beacons 50</p> <p>3.6.5 Spectrum Databases used with Device Geolocation 51</p> <p>3.7 Implementing Flexible Spectrum Access 53</p> <p>3.7.1 Software-defined Radio Underpins Flexibility 53</p> <p>3.7.2 Regulation Needs to Adapt to the New Flexibility in Radio Devices 54</p> <p>3.8 Foundations for More Flexible Access in the Future 54</p> <p>3.8.1 Finer-grained Spectrum Access Management 54</p> <p>3.8.2 More Flexible License Exemption 54</p> <p>3.8.2.1 Towards a UHF Spectrum Commons or Superhighway 55</p> <p>References 56</p> <p>Further Reading 57</p> <p><b>4 Evolving Spectrum Sharing Methods, Standards and Trials: TVWS, CBRS, MulteFire and More </b><b>59<br /></b><i>Dani Anderson, K.A. Shruthi, David Crawford, and Robert W. Stewart</i></p> <p>4.1 Introduction 59</p> <p>4.2 TV White Space 59</p> <p>4.2.1 Overview 59</p> <p>4.2.2 Operating Standards 61</p> <p>4.2.3 Overview of TVWS Trials and Projects 63</p> <p>4.3 Emerging Shared Spectrum Technologies 66</p> <p>4.3.1 Introduction 66</p> <p>4.3.2 CBRS 67</p> <p>4.3.3 Other Shared Spectrum LTE Solutions 70</p> <p>4.4 Conclusion 73</p> <p>References 73</p> <p><b>5 Spectrum Above Radio Bands </b><b>75<br /></b><i>Abhishek K. Gupta and Adrish Banerjee</i></p> <p>5.1 Introduction and Motivation for mmWave 75</p> <p>5.2 mmWave Communication: What is Different? 76</p> <p>5.2.1 Distinguishing Features 76</p> <p>5.2.2 Implications 76</p> <p>5.2.3 Opportunity and Need for Sharing 77</p> <p>5.3 Bands in Above-6GHz Spectrum 78</p> <p>5.3.1 26-GHz band: 24.25–27.5GHz 79</p> <p>5.3.2 28-GHz band: 27.5–29.5GHz 79</p> <p>5.3.3 32-GHz band: 31.8–33.4GHz 79</p> <p>5.3.4 40-GHz band: 37–43.5GHz 79</p> <p>5.3.4.1 40-GHz lower band 80</p> <p>5.3.4.2 40-GHz upper band 80</p> <p>5.3.5 64–71-GHz band 80</p> <p>5.4 Spectrum Sharing over mmWave Bands 80</p> <p>5.4.1 Factors Determining Sharing vs No Sharing 80</p> <p>5.4.1.1 Directionality 81</p> <p>5.4.1.2 Deployment and Blockage Density 81</p> <p>5.4.1.3 Traffic Characteristics 82</p> <p>5.4.1.4 Amount of Sharing 82</p> <p>5.4.1.5 Inter-operator Coordination 82</p> <p>5.4.1.6 Sharing of Other Resources 83</p> <p>5.4.1.7 Multi-user Communication 84</p> <p>5.4.1.8 Technical vs Financial Gains 84</p> <p>5.5 Spectrum Sharing Options for mmWave Bands 84</p> <p>5.5.1 Exclusive Licensing 84</p> <p>5.5.2 Unlicensed Spectrum 85</p> <p>5.5.2.1 Hybrid Spectrum Access 86</p> <p>5.5.3 Spectrum License Sharing 87</p> <p>5.5.3.1 Uncoordinated Sharing of Spectrum Licenses 87</p> <p>5.5.3.2 Restricted Sharing of Spectrum Licenses 88</p> <p>5.5.4 Shared Licenses 90</p> <p>5.5.4.1 Spectrum Pooling 90</p> <p>5.5.4.2 Partial or Fully Coordinated 90</p> <p>5.5.4.3 Common Database 91</p> <p>5.5.4.4 Sensing/D2D Communication-based Coordination 91</p> <p>5.5.5 Secondary Licenses and Markets 91</p> <p>5.5.5.1 Primary/Secondary Markets 92</p> <p>5.5.5.2 Third-party Markets 92</p> <p>5.5.6 Increasing the utilization of spectrum 92</p> <p>5.6 Conclusions 93</p> <p>References 93</p> <p><b>6 The Licensed Shared Access Approach </b><b>97<br /></b><i>António J. Morgado</i></p> <p>6.1 Introduction to Spectrum Management 97</p> <p>6.2 The Dawn of Licensed Shared Access 98</p> <p>6.2.1 The LSA Regulatory Environment 99</p> <p>6.2.2 LSA/ASA in the 2300–2400 MHz band 101</p> <p>6.3 An Improved LSA Network Architecture 103</p> <p>6.4 Operation of the Improved Architecture in Dynamic LSA Use Cases 106</p> <p>6.4.1 Railway Scenario 107</p> <p>6.4.2 Macro-cellular Scenario 109</p> <p>6.4.3 Small Cell Scenario 112</p> <p>6.5 Summary 115</p> <p>References 116</p> <p><b>7 Collaborative Sensing Techniques </b><b>121<br /></b><i>Christian Steffens and Marius Pesavento</i></p> <p>7.1 Sparse Signal Representation 123</p> <p>7.2 Sparse Sensing 125</p> <p>7.3 Collaborative Sparse Sensing 128</p> <p>7.3.1 Coherent Sparse Reconstruction 129</p> <p>7.3.2 Non-Coherent Sparse Reconstruction 131</p> <p>7.4 Estimation Performance 134</p> <p>7.4.1 Comparison of Centralized, Distributed, and Collaborative Sensing 134</p> <p>7.4.2 Source Localization 136</p> <p>7.5 Concluding Remarks 138</p> <p>References 139</p> <p><b>8 Cooperative Communication Techniques for Spectrum Sharing </b><b>147<br /></b><i>Faheem Khan, Miltiades C. Filippou, and Mathini Sellathurai</i></p> <p>8.1 Introduction 147</p> <p>8.2 Distributed Precoding Exploiting Commonly Available Statistical CSIT for Efficient Coordination 149</p> <p>8.2.1 Problem Formulation 150</p> <p>8.2.2 Distributed Statistically Coordinated Precoding 151</p> <p>8.2.3 Performance Evaluation 153</p> <p>8.3 A Statistical Channel and Primary Traffic-aware Cooperation Framework for Optimal Service Coexistence 155</p> <p>8.3.1 Joint Design of Spectrum Sensing and Reception for a SIMO Hybrid CR System 156</p> <p>8.3.1.1 Problem Formulation and Solution Framework 158</p> <p>8.3.1.2 Performance Evaluation 159</p> <p>8.3.2 Throughput Performance of Sensing-optimized Hybrid MIMO CR Systems 161</p> <p>8.3.2.1 Problem Formulation and Solution Framework 161</p> <p>8.3.2.2 Performance Evaluation 162</p> <p>8.4 Summary 164</p> <p>References 165</p> <p><b>9 Reciprocity-Based Beamforming Techniques for Spectrum Sharing in MIMO Networks </b><b>169<br /></b><i>Kalyana Gopala and Dirk T.M. Slock</i></p> <p>9.1 Multi-antenna Cognitive Radio Paradigms 169</p> <p>9.1.1 Spatial Overlay: MISO/MIMO Interference Channel 170</p> <p>9.1.2 Spatial Underlay 170</p> <p>9.1.3 Spatial Interweave 170</p> <p>9.2 From Multi-antenna Underlay to LSA Coordinated Beamforming 171</p> <p>9.2.1 CoBF and CSIT Discussion 171</p> <p>9.2.2 Some LoS Results 173</p> <p>9.2.3 Noncoherent Multi-user MIMO Communications using Covariance CSIT 174</p> <p>9.3 TDD Reciprocity Calibration 175</p> <p>9.3.1 Fundamentals 175</p> <p>9.3.2 Diagonality of the Calibration Matrix 178</p> <p>9.3.3 Coherent and Non-coherent Calibration Scheme 178</p> <p>9.3.4 UE-aided vs Internal Calibration 179</p> <p>9.3.5 Group Calibration System Model 179</p> <p>9.3.6 Least-squares Solution 181</p> <p>9.3.7 A Bilinear Model 181</p> <p>9.4 MIMO IBC Beamformer Design 182</p> <p>9.4.1 System Model 182</p> <p>9.4.2 WSR Optimization via WSMSE 182</p> <p>9.4.3 Naive UL/DL Duality-based Beamformer Exploiting Reciprocity 183</p> <p>9.5 Experimental Validation 184</p> <p>9.6 Conclusions 188</p> <p>References 188</p> <p><b>10 Spectrum Sharing with Full Duplex </b><b>191<br /></b><i>Sudip Biswas, Ali Cagatay Cirik, Miltiades C. Filippou, and Tharmalingam Ratnarajah</i></p> <p>10.1 Introduction 191</p> <p>10.2 Transceiver Design for an FD MIMO CR Cellular Network 192</p> <p>10.2.1 System Model 192</p> <p>10.2.1.1 Signal and Channel Model 192</p> <p>10.2.1.2 SI Cancellation 194</p> <p>10.2.1.3 MSE of the Received Data Stream 195</p> <p>10.2.2 Joint Transceiver Design 196</p> <p>10.2.3 Imperfect CSI and Robust Design 197</p> <p>10.2.3.1 CSI Acquisition 197</p> <p>10.2.3.2 CSI Modeling 198</p> <p>10.2.3.3 Robust Transceiver Design 198</p> <p>10.2.4 Numerical Results 200</p> <p>10.3 Transceiver Design for an FD MIMO IoT Network 203</p> <p>10.3.1 System Model 204</p> <p>10.3.1.1 Signal and Channel Model 204</p> <p>10.3.1.2 SI Cancellation 205</p> <p>10.3.1.3 MSE of the Received Data Stream 206</p> <p>10.3.2 Joint Transceiver Design 206</p> <p>10.3.3 Imperfect CSI and Robust Design 207</p> <p>10.3.4 Numerical Results 208</p> <p>10.4 Summary 209</p> <p>References 210</p> <p>Appendix for Chapter 10 211</p> <p>10.A.1 Useful lemmas 211</p> <p><b>11 Communication and Radar Systems: Spectral Coexistence and Beyond </b><b>213<br /></b><i>Fan Liu and Christos Masouros</i></p> <p>11.1 Background and Applications 213</p> <p>11.1.1 Civilian Applications 213</p> <p>11.1.2 Military Applications 214</p> <p>11.2 Radar Basics 214</p> <p>11.3 Radar Communication Coexistence 216</p> <p>11.3.1 Opportunistic Access 216</p> <p>11.3.2 Precoding Designs 216</p> <p>11.3.2.1 Interfering Channel Estimation 216</p> <p>11.3.2.2 Closed-form Precoding 218</p> <p>11.3.2.3 Optimization-based Precoding 219</p> <p>11.4 Dual-functional Radar Communication Systems 221</p> <p>11.4.1 Temporal and Spectral Processing 221</p> <p>11.4.2 Spatial Processing 222</p> <p>11.5 Summary and Open Problems 225</p> <p>References 226</p> <p><b>12 The Role of Antenna Arrays in Spectrum Sharing </b><b>229<br /></b><i>Constantinos B. Papadias, Konstantinos Ntougias, and Georgios K. Papageorgiou</i></p> <p>12.1 Introduction 229</p> <p>12.2 Spectrum Sharing 229</p> <p>12.2.1 Spectrum Sharing from a Physical Viewpoint 229</p> <p>12.2.2 Spectrum Sharing from a Regulatory Viewpoint 231</p> <p>12.3 Attributes of Antenna Arrays 233</p> <p>12.4 Impact of Arrays on Spectrum Sharing 234</p> <p>12.4.1 Spectrum Sensing 234</p> <p>12.4.2 Shared Spectrum Access 234</p> <p>12.5 Antenna-Array-Aided Spectrum Sharing 235</p> <p>12.5.1 System Setup 235</p> <p>12.5.2 Assumptions 236</p> <p>12.5.3 System Model 237</p> <p>12.5.3.1 Secondary System 237</p> <p>12.5.3.2 Primary System 238</p> <p>12.5.4 Problem Formulation 238</p> <p>12.5.4.1 Sum-SE, SE, and SINR 238</p> <p>12.5.4.2 Transmission Constraints 239</p> <p>12.5.4.3 Original Optimization Problem 239</p> <p>12.5.4.4 Relaxed Optimization Problem 240</p> <p>12.5.5 Solution and Algorithm 242</p> <p>12.5.5.1 Solution for Other Linear Precoding Schemes 242</p> <p>12.5.6 Performance Evaluation via Numerical Simulations 243</p> <p>12.6 Antenna-Array-Aided Spectrum Sensing 245</p> <p>12.6.1 Printed Yagi–Uda Arrays and Hex-Antenna Nodes 246</p> <p>12.6.2 Test Setup 248</p> <p>12.6.3 Collaborative Spectrum Sensing Techniques 249</p> <p>12.6.4 Experimental Results 250</p> <p>12.6.4.1 Detection in High SNR 253</p> <p>12.6.4.2 Detection in Low SNR 253</p> <p>12.7 Summary and Conclusions 253</p> <p>Acknowledgments 253</p> <p>References 254</p> <p><b>13 Resource Allocation for Shared Spectrum Networks </b><b>257<br /></b><i>Eduard A. Jorswieck and M. Majid Butt</i></p> <p>13.1 Introduction 257</p> <p>13.2 Information-theoretic Background 259</p> <p>13.3 Types of Spectrum Sharing 261</p> <p>13.4 Resource Allocation for Efficient Spectrum Sharing 263</p> <p>13.4.1 Multi-objective Programming 263</p> <p>13.4.2 Resource Allocation Games 265</p> <p>13.4.3 Resource Matching for Spectrum Sharing 267</p> <p>13.5 Resource and Spectrum Trading 270</p> <p>13.6 Conclusions and Future Work 275</p> <p>References 275</p> <p><b>14 Unlicensed Spectrum Access in 3GPP </b><b>279<br /></b><i>Daniela Laselva, David López Pérez, Mika Rinne, Tero Henttonen, Claudio Rosa, Markku Kuusela</i></p> <p>14.1 Introduction 279</p> <p>14.2 LTE-WLAN Aggregation at the PDCP Layer 280</p> <p>14.2.1 User Plane Radio Protocol Architecture 281</p> <p>14.2.2 Bearer Type and Aggregation 282</p> <p>14.2.3 Flow Control Schemes 283</p> <p>14.3 LTE-WLAN Integration at IP Layer 284</p> <p>14.3.1 User Plane Radio Protocol Architecture 284</p> <p>14.3.2 Flow Control Schemes 286</p> <p>14.4 LTE in Unlicensed Band 287</p> <p>14.4.1 Spectrum and Regulations 287</p> <p>14.4.2 Channel Access 288</p> <p>14.4.3 Frame Structure 289</p> <p>14.4.4 Discovery Reference Signal and RRM 290</p> <p>14.4.5 Uplink Enhancements 291</p> <p>14.5 Performance Evaluation 294</p> <p>14.5.1 Aggregation Gains of LWA and LWIP 294</p> <p>14.5.2 Performance Advantages of LAA 298</p> <p>14.6 Future Technologies 301</p> <p>14.6.1 5G New Radio in Unlicensed Band 301</p> <p>14.6.2 The Role of WLAN in the 5G System 302</p> <p>14.7 Conclusions 302</p> <p>References 303</p> <p><b>15 Performance Analysis of Spatial Spectrum Reuse in Ultradense Networks </b><b>305<br /></b><i>Youjia Chen, Ming Ding, and David López-Pérez</i></p> <p>15.1 Introduction 305</p> <p>15.2 Network Scenario and System Model 306</p> <p>15.2.1 Network Scenario 306</p> <p>15.2.2 Wireless System Model 307</p> <p>15.3 Performance Analysis of Full Spectrum Reuse Network 308</p> <p>15.3.1 The Coverage Probability 308</p> <p>15.3.2 The Area Spectral Efficiency 311</p> <p>15.4 Performance with Multi-channel Spectrum Reuse 312</p> <p>15.5 Simulation and Discussion 312</p> <p>15.5.1 Performance with Full Spectrum Reuse Strategy 313</p> <p>15.5.2 Performance with Multi-channel Spectrum Reuse Strategy 314</p> <p>15.6 Conclusion 316</p> <p>Appendix for Chapter 15 316</p> <p>15.A.1 Proof of Lemma 15.1 316</p> <p>15.A.2 Proof of Lemma 15.2 317</p> <p>15.A.3 Proof of Theorem 15.1 318</p> <p>References 318</p> <p><b>16 Large-scale Wireless Spectrum Monitoring: Challenges and Solutions based on Machine Learning </b><b>321<br /></b><i>Sreeraj Rajendran and Sofie Pollin</i></p> <p>16.1 Challenges 321</p> <p>16.2 Crowdsourcing 323</p> <p>16.3 Wireless Spectrum Analysis 324</p> <p>16.3.1 Anomaly Detection 324</p> <p>16.3.2 Performance Comparisons 328</p> <p>16.3.3 Wireless Signal Classification 331</p> <p>16.3.3.1 Fully Supervised Models 331</p> <p>16.3.3.2 Semi-supervised Models 332</p> <p>16.3.3.3 Performance-friendly Models 333</p> <p>16.4 Future Research Directions 335</p> <p>16.4.1 Machine Learning 336</p> <p>16.4.2 Anomaly Geo-localization 336</p> <p>16.4.3 Crowd Engagement and Sustainability 336</p> <p>16.5 Conclusion 337</p> <p>References 337</p> <p><b>17 Policy Enforcement in Dynamic Spectrum Sharing </b><b>341<br /></b><i>Jung-Min (Jerry) Park, Vireshwar Kumar, and Taiwo Oyedare</i></p> <p>17.1 Introduction 341</p> <p>17.2 Technical Background 342</p> <p>17.3 Security and Privacy Threats 343</p> <p>17.3.1 Sensing-driven Spectrum Sharing 343</p> <p>17.3.1.1 PHY-layer Threats 344</p> <p>17.3.1.2 MAC-layer Threats 344</p> <p>17.3.1.3 Cross-layer Threats 345</p> <p>17.3.2 Database-driven Spectrum Sharing 345</p> <p>17.3.2.1 PHY-layer Threats 346</p> <p>17.3.2.2 Threats to the Database Access Protocol 346</p> <p>17.3.2.3 Threats to the Privacy of Users 346</p> <p>17.4 Enforcement Approaches 347</p> <p>17.4.1 <i>Ex Ante </i>(Preventive) Approaches 348</p> <p>17.4.1.1 Device Hardening 348</p> <p>17.4.1.2 Network Hardening 350</p> <p>17.4.1.3 Privacy Preservation 351</p> <p>17.4.2 <i>Ex Post </i>(Punitive) Approaches 352</p> <p>17.4.2.1 Spectrum Monitoring 352</p> <p>17.4.2.2 Spectrum Forensics 352</p> <p>17.4.2.3 Localization 353</p> <p>17.4.2.4 Punishment 353</p> <p>17.5 Open Problems 354</p> <p>17.5.1 Research Challenges 354</p> <p>17.5.2 Regulatory Challenges 354</p> <p>17.6 Summary 355</p> <p>References 355</p> <p><b>18 Economics of Spectrum Sharing, Valuation, and Secondary Markets </b><b>361<br /></b><i>William Lehr</i></p> <p>18.1 Introduction 361</p> <p>18.2 Spectrum Scarcity, Regulation, and Market Trends 363</p> <p>18.3 Estimating Spectrum Values 370</p> <p>18.4 Growing Demand for Spectrum 373</p> <p>18.5 5G Future and Spectrum Economics 375</p> <p>18.6 Secondary Markets and Sharing 381</p> <p>18.7 Conclusion 384</p> <p>References 385</p> <p><b>19 The Future Outlook for Spectrum Sharing </b><b>389<br /></b><i>Richard Womersley</i></p> <p>19.1 Introduction 389</p> <p>19.2 Share and Share Alike 390</p> <p>19.3 Regulators Recognize the Value of Shared Access 393</p> <p>19.4 The True Demand for Spectrum 395</p> <p>19.5 The Impact of Sharing on Spectrum Demand 397</p> <p>19.6 General Authorization needed to Encourage Sharing 399</p> <p>19.7 The Long-term Outlook for Spectrum Sharing 401</p> <p>References 403</p> <p>Index 405</p>
<p><b>Constantinos B. Papadias, PhD,</b> is Executive Director of Research, Technology and Innovation Network at The American College of Greece, Athens, Greece. <p><b>Tharmalingam Ratnarajah, PhD,</b> is a Professor in Digital Communications and Signal Processing and Head of the Institute for Digital Communications at the University of Edinburgh, UK. <p><b>Dirk T.M. Slock, PhD,</b> teaches Statistical Signal Processing (SSP) and signal processing techniques for wireless communications at EURECOM in France.
<p><b>Combines the latest trends in spectrum sharing, both from a research and a standards/regulation/experimental standpoint</b> <p>Written by noted professionals from academia, industry, and research labs, this unique book provides a comprehensive treatment of the principles and architectures for spectrum sharing in order to help with the existing and future spectrum crunch issues. It presents readers with the most current standardization trends, including CEPT/CEE, eLSA, CBRS, MulteFire, LTE-Unlicensed (LTE-U), LTE WLAN integration with Internet Protocol security tunnel (LWIP), and LTE/Wi-Fi aggregation (LWA), and offers substantial trials and experimental results, as well as system-level performance evaluation results. The book also includes a chapter focusing on spectrum policy reinforcement and another on the economics of spectrum sharing. <p>Beginning with the historic form of cognitive radio,<i>??Spectrum Sharing: The Next Frontier in Wireless Networks</i>??continues with current standardized forms of spectrum sharing, and reviews all of the technical ingredients that may arise in spectrum sharing approaches. It also looks at policy and implementation aspects and ponders the future of the field. White spaces and data base-assisted spectrum sharing are discussed, as well as the licensed shared access approach and cooperative communication techniques. The book also covers reciprocity-based beam forming techniques for spectrum sharing in MIMO networks; resource allocation for shared spectrum networks; large scale wireless spectrum monitoring; and much more. <ul> <li>Presents a number of emerging technologies for future spectrum sharing (collaborative sensing, cooperative communication, reciprocity-based beamforming, etc.), as well as novel spectrum sharing paradigms (e.g. in full duplex and radar systems)</li> <li>Includes substantial trials and experimental results, as well as system-level performance evaluation results</li> <li>Contains a dedicated chapter on spectrum policy reinforcement and one on the economics of spectrum sharing</li> <li>Edited by experts in the field, and featuring contributions by respected professionals in the field world wide</li> </ul> <p><i>Spectrum Sharing: The Next Frontier in Wireless Networks</i>??is highly recommended for graduate students and researchers working in the areas of wireless communications and signal processing engineering. It would also benefit radio communications engineers and practitioners.

Diese Produkte könnten Sie auch interessieren:

Pulsed Power
Pulsed Power
von: Gennady A. Mesyats
PDF ebook
309,23 €
High-Frequency Oscillator Design for Integrated Transceivers
High-Frequency Oscillator Design for Integrated Transceivers
von: J. van der Tang, Dieter Kasperkovitz, Arthur H.M. van Roermund
PDF ebook
149,79 €
MEMS Vibratory Gyroscopes
MEMS Vibratory Gyroscopes
von: Cenk Acar, Andrei Shkel
PDF ebook
149,79 €