Details

The Chemical Transformations of C1 Compounds


The Chemical Transformations of C1 Compounds


1. Aufl.

von: Xiao-Feng Wu, Buxing Han, Kuiling Ding, Zhongmin Liu

583,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 14.01.2022
ISBN/EAN: 9783527831890
Sprache: englisch
Anzahl Seiten: 1776

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>The Chemical Transformations of C1 Compounds</b> <p><b> A comprehensive exploration of one-carbon molecule transformations</b> <p>The chemistry of one-carbon molecules has recently gained significant prominence as the world transitions away from a petroleum-based economy to a more sustainable one. In <i>The Chemical Transformations of C1 Compounds</i>, an accomplished team of chemists delivers an in-depth overview of recent developments in the field of single-carbon chemistry. The three-volume book covers all major C1 sources, including carbon monoxide, carbon dioxide, methane, methanol, formic acid, formaldehyde, carbenes, C1 halides, and organometallics. <p>The editors have included resources discussing the main reactions and transformations into feedstock chemicals of each of the major C1 compounds reviewed in dedicated chapters. Readers will discover cutting-edge material on organic transformations with MeNO<sub>2</sub>, DMF, DCM, methyl organometallic reagents, CCl<sub>4</sub>, CHCl<sub>3</sub>, and CHBr<sub>3</sub>, as well as recent achievements in cyanation reactions via cross-coupling. <p>The book also offers: <ul><li>Thorough introductions to chemical transformations of CH<sub>4</sub>, methods of CH<sub>4</sub> activation, chemical transformations of CH<sub>3</sub>OH and synthesis alkenes from CH<sub>3</sub>OH</li> <li>Comprehensive explorations of the carbonylation of MeOH, CH<sub>2</sub>O in organic synthesis, organic transformations of HCO<sub>2</sub>H, and hydrogen generation from HCO<sub>2</sub>H</li> <li>Practical discussions of the carbonylation of unsaturated bonds with heterogeneous and homogeneous catalysts, as well as the carbonylation of C(sp<sub>2</sub>)-X bonds and C(sp<sub>3</sub>)-X bonds</li> <li>In-depth examinations of carbonylative C-H bond activation and radical carbonylation</li></ul> <p>Perfect for organic and catalytic chemists, <i>The Chemical Transformations of C1 Compounds</i> is also an ideal resource for industrial chemists, chemical engineers, and practitioners at energy supply companies.
<p><b>Volume 1</b></p> <p><b>1 Direct Conversions of Methane via Homogeneous Processes 1<br /></b><i>Hui Chen, Anhua Hu, Liang Chang, Qing An, Hui Pan, and Zhiwei Zuo</i></p> <p>1.1 Introduction 1</p> <p>1.2 Formation of Methanol and Its Derivatives 2</p> <p>1.2.1 Electrophilic Activation 2</p> <p>1.2.2 Radical-Mediated Activation 9</p> <p>1.3 Formation of Acetic Acid 11</p> <p>1.3.1 K2S2O8 Oxidant-Based Systems 12</p> <p>1.3.2 O2 Oxidant-Based Systems 14</p> <p>1.3.3 H2SO4 Oxidant-Based Systems 15</p> <p>1.3.4 Other Oxidant-Based Systems 17</p> <p>1.4 Formation of Methanesulfonic Acid 17</p> <p>1.5 Formation of Borylated Products 19</p> <p>1.6 Formation of Aminated Products 21</p> <p>1.7 Formation of Alkylated Products 23</p> <p>1.8 Summary and Conclusions 24</p> <p>References 26</p> <p><b>2 Chemical Transformations of Methanol 31<br /></b><i>Zhengkai Chen and Xiao-Feng Wu</i></p> <p>2.1 Introduction 31</p> <p>2.2 Methylation 31</p> <p>2.2.1 C-Methylation 32</p> <p>2.3 N-Methylation 42</p> <p>2.4 Hydroxymethylation 49</p> <p>2.5 N-Formylation 51</p> <p>2.6 Methoxylation 54</p> <p>2.7 The Reactions Using Methanol as the C1 Source 62</p> <p>2.8 Conclusions 65</p> <p>References 65</p> <p><b>3 Synthesis of Olefins from CH3OH 71<br /></b><i>Wenna Zhang, Yingxu Wei, and Zhongmin Liu</i></p> <p>3.1 Introduction 71</p> <p>3.2 Catalysts of Methanol to Olefins 73</p> <p>3.2.1 ZSM-5 Catalyst with MFI Topology Structure 73</p> <p>3.2.2 SAPO-34 with CHA Topology Structure 73</p> <p>3.2.3 Other Catalysts with 8-MR Pore Opening and Cavity Structure 76</p> <p>3.3 Catalytic Reaction Mechanism of Methanol Conversion 77</p> <p>3.3.1 Reaction Course of MTO Process 77</p> <p>3.3.2 Direct Mechanism of Methanol Conversion 78</p> <p>3.3.2.1 Carbonylation-Based Mechanism 79</p> <p>3.3.2.2 Methoxymethyl Carbocation Mechanism 81</p> <p>3.3.2.3 Methane-formaldehyde Mechanism 81</p> <p>3.3.2.4 Extra-Framework Aluminum-Assisted (EFAL) Initial C—C Bond Formation 83</p> <p>3.3.2.5 Oxonium Ion-ylide Mechanism 85</p> <p>3.3.2.6 SMS/TMO-mediated DME/Methanol Activation Mechanism 88</p> <p>3.3.3 Autocatalysis Character of Methanol Conversion 88</p> <p>3.3.4 Indirect Mechanism of Methanol Conversion 90</p> <p>3.3.4.1 Hydrocarbon Pool Mechanism 91</p> <p>3.3.4.2 Dual-cycle Mechanism 97</p> <p>3.3.4.3 Cyclopentadienes-Based Cycle 100</p> <p>3.3.5 Evolution from Direct Mechanism to Indirect Mechanism 102</p> <p>3.3.6 Reaction Network of MTO Process 105</p> <p>3.4 Deactivation of MTO Reaction 107</p> <p>3.4.1 Low-temperature Deactivation Mechanism of SAPO-34 in MTO Reaction 108</p> <p>3.4.2 High-temperature Deactivation Mechanism of SAPO-34 in MTO Reaction 109</p> <p>3.4.3 A Cage-passing Growth Deactivating Model on SAPO-34 112</p> <p>3.5 DMTO Process Developments 115</p> <p>3.5.1 Scale-up Synthesis of DMTO Catalyst 115</p> <p>3.5.2 Industrial Test of DMTO Technology 115</p> <p>3.5.3 DMTO Technology Commercialization 117</p> <p>3.5.4 DMTO-II Technology 117</p> <p>3.5.5 DMTO-III Technology 118</p> <p>3.6 Conclusions and Outlook 119</p> <p>Acknowledgments 119</p> <p>References 119</p> <p><b>4 Carbonylation of Methanol: A Versatile Reaction 127<br /></b><i>Dipak K. Dutta</i></p> <p>4.1 Introduction 127</p> <p>4.2 Carbonylation of Methanol to Produce Acetic Acid 131</p> <p>4.2.1 Industrial Processes 131</p> <p>4.2.1.1 The Cobalt-Based BASF Process 131</p> <p>4.2.1.2 Rhodium-Catalyst-Based Monsanto Carbonylation Process 132</p> <p>4.2.1.3 The Iridium-Based Cativa Process of BP Chemicals 135</p> <p>4.2.2 Laboratory Processes 137</p> <p>4.2.2.1 Homogeneous Catalysts 137</p> <p>4.3 Conclusion and Future Aspects 151</p> <p>Acknowledgments 152</p> <p>References 152</p> <p><b>5 Formaldehyde as C1 Synthon in Organic Synthesis 157<br /></b><i>Wanfang Li and Xiao-Feng Wu</i></p> <p>5.1 Introduction 157</p> <p>5.2 Formaldehyde as Methylenes (–CH2–) 159</p> <p>5.2.1 Methylenes Linking Two Aryl Groups 159</p> <p>5.2.2 Methylenes Linking Two Alkyl Groups 165</p> <p>5.2.3 Methylenes Linking Carbon and Nitrogen 167</p> <p>5.2.3.1 Mannich-Type Reactions 167</p> <p>5.2.3.2 Formation of Propargyl Amines 167</p> <p>5.2.3.3 Synthesis of Allyl and Benzyl Amines 172</p> <p>5.2.4 Methylenes Linking Carbon and Oxygen 176</p> <p>5.2.4.1 Oxa-Pictet–Spengler Reaction 176</p> <p>5.2.4.2 Formation of Propargyl Alcohols 178</p> <p>5.2.5 Methylenes Linking Carbon and Halogens 179</p> <p>5.2.6 Methenynation Reactions (=CH2) 180</p> <p>5.2.6.1 Formation of Terminal Allenes 180</p> <p>5.2.6.2 Methenynation of Allylic and Benzylic Positions 182</p> <p>5.2.6.3 Methylenynation of Carbonyls via Wittig Reaction 183</p> <p>5.2.6.4 α-Methylenynations of Carbonyls 184</p> <p>5.2.7 Methylenen Linking Two Heteroatoms 185</p> <p>5.3 Hydroxymethylation Reagent (–CH2OH) 192</p> <p>5.3.1 Hydroxymethylation of Carbonyl Substrates 192</p> <p>5.3.2 Prins and Carbonyl-Ene Reactions with Formaldehyde 199</p> <p>5.3.3 Morita–Baylis–Hillman Reaction with Formaldehyde 205</p> <p>5.3.4 Reductive Hydroxymethylation of Alkenes and Alkynes Allenes 206</p> <p>5.3.5 Hydromethoxylation of Organometallics 211</p> <p>5.3.6 Hydromethylation of Miscellaneous Compounds 213</p> <p>5.4 As CO Source 217</p> <p>5.4.1 Carbonylation Reactions 217</p> <p>5.4.1.1 Carbonylation of Aryl Halides 217</p> <p>5.4.1.2 Carbonylation of Alkenes and Alkynes 220</p> <p>5.4.2 Hydroformylations Reactions 223</p> <p>5.4.3 Formaldehyde for Ketone Synthesis 227</p> <p>5.5 As Hydrogen Donor and Accepter 227</p> <p>5.6 As Methylation and Formylation Reagents 230</p> <p>5.6.1 Methylation Reagent 230</p> <p>5.6.2 Formylation Reagent 232</p> <p>5.7 Formaldehyde as Ligand and Reductant in Organometallic Chemistry 234</p> <p>5.8 Summary and Outlook 235</p> <p>References 236</p> <p><b>6 Organic Transformations of HCO2H 249<br /></b><i>Zhiping Yin and Xiao-Feng Wu</i></p> <p>6.1 Introduction 249</p> <p>6.2 Providing Carbonyl Moiety 249</p> <p>6.2.1 Reactions with Aryl Halides or Triflates 250</p> <p>6.2.2 Reactions with Alkenes or Alkynes 254</p> <p>6.2.3 Reactions with Amines 256</p> <p>6.3 Providing Carboxyl Moiety 257</p> <p>6.3.1 Reactions with Aryl Halides 257</p> <p>6.3.2 Reactions with Arenes 258</p> <p>6.3.3 Reactions with Alkenes or Alkynes 260</p> <p>6.4 As Hydrogen Source 263</p> <p>6.4.1 Reducing Alkenes or Alkynes 263</p> <p>6.4.2 Reducing Carbonyl Groups 268</p> <p>6.4.3 Hydrogenolysis Benzylic C—O Bonds 272</p> <p>6.4.4 Reducing Nitro Groups 275</p> <p>6.4.5 Reducing Unsaturated C—N Bonds 278</p> <p>6.5 Other Reactions 281</p> <p>6.6 Conclusion 283</p> <p>References 283</p> <p><b>7 The Multifunctional Materials for Heterogenous Carboxylation: From Fundamental Understanding to Industrial Applications 289<br /></b><i>Yunjie Ding, Li Yan, and Xiangen Song</i></p> <p>7.1 Introduction 289</p> <p>7.2 Hydroformylation of Olefins 289</p> <p>7.2.1 Heterogeneous Hydroformylation 290</p> <p>7.2.1.1 Hydroformylation of Ethylene 290</p> <p>7.2.1.2 Hydroformylation of Propene 292</p> <p>7.2.1.3 Hydroformylation of Butenes 293</p> <p>7.2.1.4 Hydroformylation of Long-Chain Olefins 298</p> <p>7.2.1.5 Asymmetric Hydroformylation 301</p> <p>7.3 Heterogeneous Carbonylation 303</p> <p>7.4 Other Catalytic Reactions 307</p> <p>7.4.1 Asymmetric Hydrogenation 307</p> <p>7.4.2 Alkoxycarbonylation 308</p> <p>7.4.3 Suzuki–Miyaura Coupling Reactions 311</p> <p>7.4.4 Oxidative Heck Reaction 312</p> <p>7.4.5 Hydrogenation 313</p> <p>7.4.6 Chemoselective Decarbonylation of Aldehydes 315</p> <p>7.4.7 Cyclic Addition Reaction of CO2 and Epoxides 315</p> <p>7.5 Summary and Perspective 319</p> <p>Acknowledgments 319</p> <p>Conflict of Interest 319</p> <p>References 319</p> <p><b>8 Recent Hydrocarbonylation of Unsaturated Hydrocarbons with Homogeneous Catalyst 325<br /></b><i>Kaiwu Dong and Kuiling Ding</i></p> <p>8.1 Introduction 325</p> <p>8.2 Transition Metal-Catalyzed Hydroformylation 327</p> <p>8.2.1 Cobalt-Catalyzed Hydroformylation 328</p> <p>8.2.2 Rhodium-Catalyzed Hydroformylation 332</p> <p>8.2.3 Ruthenium-Catalyzed Hydroformylation 352</p> <p>8.2.4 Iron-, Osmium-, and Iridium-Catalyzed Hydroformylation 357</p> <p>8.2.5 Metal-Free Hydroformylation 360</p> <p>8.3 Transition Metal-Catalyzed Hydrocarbonylation (Reppe Carbonylation) 361</p> <p>8.3.1 Palladium-Catalyzed Hydrocarbonylation 361</p> <p>8.3.1.1 Palladium-Catalyzed Hydrocarbonylation of Alkenes 361</p> <p>8.3.1.2 Palladium-Catalyzed Enantioselective Hydrocarbonylation of Alkenes 383</p> <p>8.3.1.3 Palladium-Catalyzed Hydrocarbonylation of Alkynes 386</p> <p>8.3.1.4 Palladium-Catalyzed Hydrocarbonylation of In Situ Generated Alkenes 393</p> <p>8.3.2 Nickel-Catalyzed Hydrocarbonylation 395</p> <p>8.3.3 Ruthenium- and Platinum-Catalyzed Hydrocarbonylation 397</p> <p>Acknowledgments 399</p> <p>List of Abbreviations 399</p> <p>References 400</p> <p><b>9 Carbonylation of C(sp2)—X Bonds 415<br /></b><i>Huaanzi Hu, Jian Liu, and Qiang Zhu</i></p> <p>9.1 Introduction 415</p> <p>9.2 Common Aspects 415</p> <p>9.2.1 Types of C(sp2)—X 416</p> <p>9.2.1.1 Aryl/Vinyl Halides 416</p> <p>9.2.1.2 Aryl/Vinyl Pseudohalides 417</p> <p>9.2.2 Catalysts or Initiators 418</p> <p>9.2.2.1 Noble Metal Catalysts 418</p> <p>9.2.2.2 Non-Noble Metal Catalysts 420</p> <p>9.2.2.3 Photoinitiated Radical Process 421</p> <p>9.2.2.4 Other Radical Process 425</p> <p>9.2.3 CO Sources 425</p> <p>9.2.3.1 Metal Carbonyl Complex 426</p> <p>9.2.3.2 Formic Acid and Its Derivatives 426</p> <p>9.2.3.3 Others 428</p> <p>9.2.3.4 The Two-Chamber System 431</p> <p>9.2.4 Nucleophiles 431</p> <p>9.3 Domino Carbonylations 434</p> <p>9.3.1 Intramolecular Domino Carbonylations 434</p> <p>9.3.2 Intermolecular Domino Carbonylations 436</p> <p>9.4 Double Carbonylations 438</p> <p>9.4.1 Adjacent Carbonyl Groups 439</p> <p>9.4.2 Nonadjacent Carbonyl Groups 441</p> <p>9.5 Asymmetric Carbonylations 442</p> <p>9.6 Applications 445</p> <p>9.6.1 Synthesis of Heterocycles 445</p> <p>9.6.2 Drugs or Natural Products 448</p> <p>References 452</p> <p><b>10 Carbonylation of C(sp3)—X Bonds Utilizing CO 459<br /></b><i>Renyi Shi and Aiwen Lei</i></p> <p>10.1 Introduction 459</p> <p>10.2 Carbonylation of Allyl Compounds 460</p> <p>10.2.1 Allyl Metallic Reagents 460</p> <p>10.2.2 Allyl Halides 464</p> <p>10.2.3 Allyl Esters 466</p> <p>10.2.4 Allyl Ethers 472</p> <p>10.2.5 Allyl Alcohols 473</p> <p>10.2.6 Allyl Amines 477</p> <p>10.3 Carbonylation of Benzylic Compounds 477</p> <p>10.3.1 Benzyl Halides 477</p> <p>10.3.2 Benzyl Alcohol 487</p> <p>10.3.3 Benzyl Amines 490</p> <p>10.3.4 Benzyl-H 491</p> <p>10.3.5 Others 492</p> <p>10.4 α-Carbonylation of Carbonyl Derivatives 493</p> <p>10.4.1 α-Halide Carbonyl Derivatives 493</p> <p>10.4.2 α-H Carbonyl Derivatives 494</p> <p>10.4.3 Other 494</p> <p>10.5 Carbonylation of Aliphatic Alkyl Compounds 495</p> <p>10.5.1 Alkyl Metallic Reagents 495</p> <p>10.5.2 Aliphatic Alkyl Halides 496</p> <p>10.5.3 Carbonylation of Heterocycles 503</p> <p>10.5.4 Aliphatic C—H Bonds 510</p> <p>10.6 Conclusion 515</p> <p>References 516</p> <p><b>Volume 2</b></p> <p><b>11 Carbonylative C—H Bond Activation 533<br /></b><i>Angela Kaiser and Bruce A. Arndtsen</i></p> <p><b>12 Recent Advances in Radical Carbonylation 567<br /></b><i>Shuhei Sumino, Takahide Fukuyama, and Ilhyong Ryu</i></p> <p><b>13 Asymmetric Carbonylation Reactions 611<br /></b><i>Shao-Tao Bai, Jialin Wen, and Xumu Zhang</i></p> <p><b>14 Carbonylative Synthesis of DPC (Diphenyl Carbonate) 667<br /></b><i>Raffaella Mancuso and Bartolo Gabriele</i></p> <p><b>15 Oxidative Carbonylation of Amines 687<br /></b><i>Yanwei Cao, Lin He, and Chungu Xia</i></p> <p><b>16 Carbonylation of Nitroarenes and Related Compounds 721<br /></b><i>Fabio Ragaini and Francesco Ferretti</i></p> <p><b>17 Zeolite-Catalyzed Carbonylation of Dimethyl Ether 763<br /></b><i>Ensheng Zhan, Zhiping Xiong, and Wenjie Shen</i></p> <p><b>18 Complex Natural Product Total Syntheses Facilitated by Palladium-Catalyzed Carbonylative Cyclizations 793<br /></b><i>Yiyang Luo, Lei Li, and Mingji Dai</i></p> <p><b>19 Metal-Catalyzed Alternating Polymerization Reactions with Carbon Monoxide 827<br /></b><i>Werner Oberhauser</i></p> <p><b>20 CO Hydrogenation 861<br /></b><i>Jingting Hu, Wei Zhou, Kang Cheng, Qinghong Zhang, and Ye Wang</i></p> <p><b>21 Carboxylation with Carbon Dioxide as a C1 Source via Carbon–Carbon Bond Forming Reactions 909<br /></b><i>Tetsuaki Fujihara</i></p> <p><b>22 Cyclization Reactions with CO2 973<br /></b><i>Arjan W. Kleij</i></p> <p><b>23 Reduction of CO2 to Formic Acid 1003<br /></b><i>Bernard B. A. Bediako, Qingli Qian, and Buxing Han</i></p> <p><b>24 Reduction of CO2 to CO and Their Applications 1027<br /></b><i>Karoline T. Neumann, Anne K. Ravn, Martin B. Johansen, Aske S. Donslund, Magnus H. Rønne, Haraldur G. Gudmundsson, and Troels Skrydstrup</i></p> <p><b>Volume 3</b></p> <p><b>25 Hydrogenation of CO2 to Chemicals with Green Hydrogen 1073<br /></b><i>Feng Sha, Xinyi Liu, Shan Tang, Jijie Wang, and Can Li</i></p> <p><b>26 Methylation Reactions with CO2 1185<br /></b><i>Xiang-Yang Yao, Zhi-Wen Yang, Hong-Ru Li, and Liang-Nian He</i></p> <p><b>27 Using CO2 as –CH– and –CH2– Sources 1217<br /></b><i>Xiao-Wang Chen, Yong-Yuan Gui, Yuan-Xu Jiang, Ke Jing, Ya-Nan Niu, Yue-Ming Jiang, and Da-Gang Yu</i></p> <p><b>28 Catalytic Asymmetric Transformation of CO2 1265<br /></b><i>Fachao Yan, Jian-Fei Bai, and Yuehui Li</i></p> <p><b>29 Polymerization Reactions with CO2 1305<br /></b><i>Wen-Bing Li and Xiao-Bing Lu</i></p> <p><b>30 Transition-Metal-Catalyzed C–CN Cross-Coupling 1337<br /></b><i>Murugan Dhanalakshmi and Pazhamalai Anbarasan</i></p> <p><b>31 Recent Advancement in Transition-Metal-Catalyzed Hydrocyanation of Nonpolar Unsaturated Compounds 1367<br /></b><i>Rongrong Yu, Kaiwu Dong, and Xianjie Fang</i></p> <p><b>32 Organic Transformations with MeNO2 1397<br /></b><i>Debarati Das, Nilam Patil, and Bhalchandra M. Bhanage</i></p> <p><b>33 Applications of DMF as a Reagent in Organic Synthesis 1439<br /></b><i>Zechao Wang and Xiao-Feng Wu</i></p> <p><b>34 Advances in the Synthesis of Methylated Products Through Direct Approaches: A Guide for Selecting Methylation Reagents 1475<br /></b><i>Yantao Chen</i></p> <p><b>35 Organic Transformations with DCM, CCl4, CHCl3, and CHBr3 and Other Related Reactions 1577<br /></b><i>Yunyun Liu and Jie-Ping Wan</i></p> <p><b>36 Trifluoromethylation with CF3I and Other Related Reagents 1609<br /></b><i>Xiu-Hua Xu and Feng-Ling Qing</i></p> <p><b>37 The Applications of Dimethyl Sulfoxide as a One-Carbon Source in Organic Synthesis 1647<br /></b><i>Chong-Liang Li and Xiao-Feng Wu</i></p> <p>Index 1667</p>
<p><b><i>Xiao-Feng Wu, PhD,</b> has published over 400 publications in international journals and is the editor or author of 10 books. He received his doctorate from the Leibniz Institute for Catalysis in Germany. </i></p> <p><b><i> Buxing Han, PhD,</b> is Professor and Academician at the Institute of Chemistry, Chinese Academy of Sciences. He has published more than 300 papers and authored over 20 patents. He received his doctorate from the Chinese Academy of Sciences in 1988. </i> <p><b><i> Kuiling Ding, PhD,</b> is Executive Vice President at Shanghai Jiaotong University. He received his doctorate in 1990 from Nanjing University and is a member of the Chinese Academy of Sciences. </i> <p><b><i>Zhongmin Liu, PhD,</b> is Director of the Dalian Institute of Chemical Physics and the Qingdao Institute of Bioenergy and Bioprocess Technology. He received his doctorate in Physical Chemistry from the Dalian Institute of Chemical Physics in 1990.</i>
<p><b> A comprehensive exploration of one-carbon molecule transformations</b></p> <p>The chemistry of one-carbon molecules has recently gained significant prominence as the world transitions away from a petroleum-based economy to a more sustainable one. In <i>The Chemical Transformations of C1 Compounds</i>, an accomplished team of chemists delivers an in-depth overview of recent developments in the field of single-carbon chemistry. The three-volume book covers all major C1 sources, including carbon monoxide, carbon dioxide, methane, methanol, formic acid, formaldehyde, carbenes, C1 halides, and organometallics. <p>The editors have included resources discussing the main reactions and transformations into feedstock chemicals of each of the major C1 compounds reviewed in dedicated chapters. Readers will discover cutting-edge material on organic transformations with MeNO<sub>2</sub>, DMF, DCM, methyl organometallic reagents, CCl<sub>4</sub>, CHCl<sub>3</sub>, and CHBr<sub>3</sub>, as well as recent achievements in cyanation reactions via cross-coupling. <p>The book also offers: <ul><li>Thorough introductions to chemical transformations of CH<sub>4</sub>, methods of CH<sub>4</sub> activation, chemical transformations of CH<sub>3</sub>OH and synthesis alkenes from CH<sub>3</sub>OH</li> <li>Comprehensive explorations of the carbonylation of MeOH, CH<sub>2</sub>O in organic synthesis, organic transformations of HCO<sub>2</sub>H, and hydrogen generation from HCO<sub>2</sub>H</li> <li>Practical discussions of the carbonylation of unsaturated bonds with heterogeneous and homogeneous catalysts, as well as the carbonylation of C(sp<sub>2</sub>)-X bonds and C(sp<sub>3</sub>)-X bonds</li> <li>In-depth examinations of carbonylative C-H bond activation and radical carbonylation</li></ul> <p>Perfect for organic and catalytic chemists, <i>The Chemical Transformations of C1 Compounds</i> is also an ideal resource for industrial chemists, chemical engineers, and practitioners at energy supply companies.

Diese Produkte könnten Sie auch interessieren:

Oxidation of Alcohols to Aldehydes and Ketones
Oxidation of Alcohols to Aldehydes and Ketones
von: Gabriel Tojo, Marcos I. Fernandez
PDF ebook
96,29 €
Metal-Catalysed Reactions of Hydrocarbons
Metal-Catalysed Reactions of Hydrocarbons
von: Geoffrey C. Bond
PDF ebook
96,29 €