Details

Handbook of Measurement in Science and Engineering, Volume 3


Handbook of Measurement in Science and Engineering, Volume 3


1. Aufl.

von: Myer Kutz

307,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 20.06.2016
ISBN/EAN: 9781119244769
Sprache: englisch
Anzahl Seiten: 832

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A multidisciplinary reference of engineering measurement tools, techniques, and applications</b></p> <p>"When you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely in your thoughts advanced to the stage of science." <i>— Lord Kelvin</i></p> <p>Measurement is at the heart of any engineering and scientific discipline and job function. Whether engineers and scientists are attempting to state requirements quantitatively and demonstrate compliance; to track progress and predict results; or to analyze costs and benefits, they must use the right tools and techniques to produce meaningful data.</p> <p>The <i>Handbook of Measurement in Science and Engineering</i> is the most comprehensive, up-to-date reference set on engineering and scientific measurements—beyond anything on the market today. Encyclopedic in scope, <i>Volume 3</i> covers measurements in physics, electrical engineering and chemistry:</p> <ul> <li>Laser Measurement Techniques</li> <li>Magnetic Force Images using Capacitive Coupling Effect</li> <li>Scanning Tunneling Microscopy</li> <li>Measurement of Light and Color</li> <li>The Detection and Measurement of Ionizing Radiation</li> <li>Measuring Time and Comparing Clocks</li> <li>Laboratory-Based Gravity Measurement</li> <li>Cryogenic Measurements</li> <li>Temperature-Dependent Fluorescence Measurements</li> <li>Voltage and Current Transducers for Power Systems</li> <li>Electric Power and Energy Measurement</li> <li>Chemometrics for the Engineering and Measurement Sciences</li> <li>Liquid Chromatography</li> <li>Mass Spectroscopy Measurements of Nitrotyrosine-Containing Proteins</li> <li>Fluorescence Spectroscopy</li> <li>X-Ray Absorption Spectroscopy</li> <li>Nuclear Magnetic Resonance (NMR) Spectroscopy</li> <li>Near Infrared (NIR) Spectroscopy</li> <li>Nanomaterials Properties</li> <li>Chemical Sensing</li> </ul> Vital for engineers, scientists, and technical managers in industry and government, <i>Handbook of Measurement in Science and Engineering</i> will also prove ideal for academics and researchers at universities and laboratories.
<p>VOLUME 3</p> <p>List of Contributors xxi</p> <p>PREFACE xxv</p> <p><b>Part VII Physics and Electrical Engineering 1943</b></p> <p><b>54 Laser Measurement Techniques 1945<br /></b><i>Cecil S. Joseph, Gargi Sharma, Thomas M. Goyette, and Robert H. Giles</i></p> <p>54.1 Introduction, 1945</p> <p>54.1.1 History and Development of the MASER, 1945</p> <p>54.1.2 Basic Laser Physics, 1946</p> <p>54.1.3 Laser Beam Characteristics, 1951</p> <p>54.1.4 Example: CO<sub>2</sub> Laser Pumped Far‐Infrared Gas Laser Systems, 1956</p> <p>54.1.5 Heterodyned Detection, 1959</p> <p>54.1.6 Transformation of Multimode Laser Beams from THz Quantum Cascade Lasers, 1962</p> <p>54.1.7 Suggested Reading, 1965</p> <p>54.2 Laser Measurements: Laser‐Based Inverse Synthetic Aperture Radar Systems, 1965</p> <p>54.2.1 ISAR Theory, 1966</p> <p>54.2.2 DFT in Radar Imaging, 1967</p> <p>54.2.3 Signal Processing Considerations: Sampling Theory, 1970</p> <p>54.2.4 Measurement Calibration, 1971</p> <p>54.2.5 Example Terahertz Compact Radar Range, 1972</p> <p>54.2.6 Suggested Reading, 1974</p> <p>54.3 Laser Imaging Techniques, 1974</p> <p>54.3.1 Imaging System Measurement Parameters, 1975</p> <p>54.3.2 Terahertz Polarized Reflection Imaging of Nonmelanoma Skin Cancers, 1981</p> <p>54.3.3 Confocal Imaging, 1985</p> <p>54.3.4 Optical Coherence Tomography, 1987</p> <p>54.3.5 Femtosecond Laser Imaging, 1990</p> <p>54.3.6 Laser Raman Spectroscopy, 1996</p> <p>54.3.7 Suggested Reading, 1997</p> <p>References, 1997</p> <p><b>55 Magnetic Force Images Using Capacitive Coupling Effect 2001<br /></b><i>Byung I. Kim</i></p> <p>55.1 Introduction, 2001</p> <p>55.2 Experiment, 2004</p> <p>55.2.1 Principle, 2004</p> <p>55.2.2 Instrumentation, 2004</p> <p>55.2.3 Approach, 2005</p> <p>55.3 Results and Discussion, 2006</p> <p>55.3.1 Separation of Topographic Features from Magnetic Force Images Using Capacitive Coupling Effect, 2007</p> <p>55.3.2 Effects of Long‐Range Tip–Sample Interaction on Magnetic Force Imaging: A Comparative Study Between Bimorph‐Driven System and Electrostatic Force Modulation, 2012</p> <p>55.4 Conclusion, 2020</p> <p>References, 2021</p> <p><b>56 Scanning Tunneling Microscopy 2025<br /></b><i>Kwok‐Wai Ng</i></p> <p>56.1 Introduction, 2025</p> <p>56.2 Theory of Operation, 2026</p> <p>56.3 Measurement of the Tunnel Current, 2030</p> <p>56.4 The Scanner, 2032</p> <p>56.5 Operating Mode, 2035</p> <p>56.6 Coarse Approach Mechanism, 2036</p> <p>56.7 Summary, 2041</p> <p>References, 2042</p> <p><b>57 Measurement of Light and Color 2043<br /></b><i>John D. Bullough</i></p> <p>57.1 Introduction, 2043</p> <p>57.2 Lighting Terminology, 2043</p> <p>57.2.1 Fundamental Light and Color Terms, 2043</p> <p>57.2.2 Terms Describing the Amount and Distribution of Light, 2047</p> <p>57.2.3 Terms Describing Lighting Technologies and Performance, 2048</p> <p>57.2.4 Common Quantities Used in Lighting Specification, 2052</p> <p>57.3 Basic Principles of Photometry and Colorimetry, 2056</p> <p>57.3.1 Photometry, 2056</p> <p>57.3.2 Colorimetry, 2063</p> <p>57.4 Instrumentation, 2072</p> <p>57.4.1 Illuminance Meters, 2072</p> <p>57.4.2 Luminance Meters, 2072</p> <p>57.4.3 Spectroradiometers, 2074</p> <p>References, 2074</p> <p><b>58 The Detection and Measurement of Ionizing Radiation 2075<br /></b><i>Clair J. Sullivan</i></p> <p>58.1 Introduction, 2075</p> <p>58.2 Common Interactions of Ionizing Radiation, 2076</p> <p>58.2.1 Radiation Interactions, 2076</p> <p>58.3 The Measurement of Charge, 2077</p> <p>58.3.1 Counting Statistics, 2078</p> <p>58.3.2 The Two Measurement Modalities, 2080</p> <p>58.4 Major Types of Detectors, 2081</p> <p>58.4.1 Gas Detectors, 2081</p> <p>58.4.2 Ionization Chambers, 2086</p> <p>58.4.3 Proportional Counters, 2090</p> <p>58.4.4 GM Detectors, 2092</p> <p>58.4.5 Scintillators, 2092</p> <p>58.4.6 Readout of Scintillation Light, 2094</p> <p>58.4.7 Semiconductors, 2096</p> <p>58.5 Neutron Detection, 2100</p> <p>58.5.1 Thermal Neutron Detection, 2102</p> <p>58.5.2 Fast Neutron Detection, 2104</p> <p>58.6 Concluding Remarks, 2106</p> <p>References, 2106</p> <p><b>59 Measuring Time and Comparing Clocks 2109<br /></b><i>Judah Levine</i></p> <p>59.1 Introduction, 2109</p> <p>59.2 A Generic Clock, 2109</p> <p>59.3 Characterizing the Stability of Clocks and Oscillators, 2110</p> <p>59.3.1 Worst‐Case Analysis, 2111</p> <p>59.3.2 Statistical Analysis and the Allan Variance, 2113</p> <p>59.3.3 Limitations of the Statistics, 2116</p> <p>59.4 Characteristics of Different Types of Oscillators, 2117</p> <p>59.5 Comparing Clocks and Oscillators, 2119</p> <p>59.6 Noise Models, 2121</p> <p>59.6.1 White Phase Noise, 2121</p> <p>59.6.2 White Frequency Noise, 2122</p> <p>59.6.3 Long‐Period Effects: Frequency Aging, 2123</p> <p>59.6.4 Flicker Noise, 2124</p> <p>59.7 Measuring Tools and Methods, 2126</p> <p>59.8 Measurement Strategies, 2129</p> <p>59.9 The Kalman Estimator, 2133</p> <p>59.10 Transmitting Time and Frequency Information, 2135</p> <p>59.10.1 Modeling the Delay, 2136</p> <p>59.10.2 The Common‐View Method, 2137</p> <p>59.10.3 The “Melting‐Pot” Version of Common View, 2138</p> <p>59.10.4 Two‐Way Methods, 2139</p> <p>59.10.5 The Two‐Color Method, 2139</p> <p>59.11 Examples of the Measurement Strategies, 2141</p> <p>59.11.1 The Navigation Satellites of the GPS, 2141</p> <p>59.11.2 The One‐Way Method of Time Transfer: Modeling the Delay, 2144</p> <p>59.11.3 The Common‐View Method, 2145</p> <p>59.11.4 Two‐Way Time Protocols, 2147</p> <p>59.12 The Polling Interval: How Often Should I Calibrate a Clock?, 2152</p> <p>59.13 Error Detection, 2155</p> <p>59.14 Cost–Benefit Analysis, 2156</p> <p>59.15 The National Time Scale, 2157</p> <p>59.16 Traceability, 2158</p> <p>59.17 Summary, 2159</p> <p>59.18 Bibliography, 2160</p> <p>References, 2160</p> <p><b>60 Laboratory‐Based Gravity Measurement 2163<br /></b><i>Charles D. Hoyle, Jr.</i></p> <p>60.1 Introduction, 2163</p> <p>60.2 Motivation for Laboratory‐Scale Tests of Gravitational Physics, 2164</p> <p>60.3 Parameterization, 2165</p> <p>60.4 Current Status of Laboratory‐Scale Gravitational Measurements, 2166</p> <p>60.4.1 Tests of the ISL, 2166</p> <p>60.4.2 WEP Tests, 2167</p> <p>60.4.3 Measurements of G, 2167</p> <p>60.5 Torsion Pendulum Experiments, 2167</p> <p>60.5.1 General Principles and Sensitivity, 2168</p> <p>60.5.2 Fundamental Limitations, 2168</p> <p>60.5.3 ISL Experiments, 2171</p> <p>60.5.4 Future ISL Tests, 2172</p> <p>60.5.5 WEP Tests, 2176</p> <p>60.5.6 Measurements of G, 2176</p> <p>60.6 Microoscillators and Submicron Tests of Gravity, 2177</p> <p>60.6.1 Microcantilevers, 2177</p> <p>60.6.2 Very Short‐Range ISL Tests, 2177</p> <p>60.7 Atomic and Nuclear Physics Techniques, 2178</p> <p>Acknowledgements, 2178</p> <p>References, 2178</p> <p><b>61 Cryogenic Measurements 2181<br /></b><i>Ray Radebaugh</i></p> <p>61.1 Introduction, 2181</p> <p>61.2 Temperature, 2182</p> <p>61.2.1 ITS‐90 Temperature Scale and Primary Standards, 2182</p> <p>61.2.2 Commercial Thermometers, 2183</p> <p>61.2.3 Thermometer Use and Comparisons, 2193</p> <p>61.2.4 Dynamic Temperature Measurements, 2199</p> <p>61.3 Strain, 2201</p> <p>61.3.1 Metal Alloy Strain Gages, 2202</p> <p>61.3.2 Temperature Effects, 2203</p> <p>61.3.3 Magnetic Field Effects, 2204</p> <p>61.3.4 Measurement System, 2205</p> <p>61.3.5 Dynamic Measurements, 2205</p> <p>61.4 Pressure, 2205</p> <p>61.4.1 Capacitance Pressure Sensors, 2206</p> <p>61.4.2 Variable Reluctance Pressure Sensors, 2206</p> <p>61.4.3 Piezoresistive Pressure Sensors, 2208</p> <p>61.4.4 Piezoelectric Pressure Sensors, 2210</p> <p>61.5 Flow, 2211</p> <p>61.5.1 Positive Displacement Flowmeter (Volume Flow), 2212</p> <p>61.5.2 Angular Momentum Flowmeter (Mass Flow), 2212</p> <p>61.5.3 Turbine Flowmeter (Volume Flow), 2213</p> <p>61.5.4 Differential Pressure Flowmeter, 2213</p> <p>61.5.5 Thermal or Calorimetric (Mass Flow), 2216</p> <p>61.5.6 Hot‐Wire Anemometer (Mass Flow), 2217</p> <p>61.6 Liquid Level, 2218</p> <p>61.7 Magnetic Field, 2219</p> <p>61.8 Conclusions, 2220</p> <p>References, 2220</p> <p><b>62 Temperature‐Dependent Fluorescence Measurements 2225<br /></b><i>James E. Parks, Michael R. Cates, Stephen W. Allison, David L. Beshears, </i><i>M. Al Akerman, and Matthew B. Scudiere</i></p> <p>62.1 Introduction, 2225</p> <p>62.2 Advantages of Phosphor Thermometry, 2227</p> <p>62.3 Theory and Background, 2227</p> <p>62.4 Laboratory Calibration of Tp Systems, 2235</p> <p>62.5 History of Phosphor Thermometry, 2238</p> <p>62.6 Representative Measurement Applications, 2239</p> <p>62.6.1 Permanent Magnet Rotor Measurement, 2239</p> <p>62.6.2 Turbine Engine Component Measurement, 2240</p> <p>62.7 Two‐Dimensional and Time‐Dependent Temperature Measurement, 2241</p> <p>62.8 Conclusion, 2243</p> <p>References, 2243</p> <p><b>63 Voltage and Current Transducers for Power Systems 2245<br /></b><i>Carlo Muscas and Nicola Locci</i></p> <p>63.1 Introduction, 2245</p> <p>63.2 Characterization of Voltage and Current Transducers, 2247</p> <p>63.3 Instrument Transformers, 2248</p> <p>63.3.1 Theoretical Fundamentals and Characteristics, 2248</p> <p>63.3.2 Instrument Transformers for Protective Purposes, 2252</p> <p>63.3.3 Instrument Transformers under Nonsinusoidal Conditions, 2253</p> <p>63.3.4 Capacitive Voltage Transformer, 2254</p> <p>63.4 Transducers Based on Passive Components, 2255</p> <p>63.4.1 Shunts, 2255</p> <p>63.4.2 Voltage Dividers, 2256</p> <p>63.4.3 Isolation Amplifiers, 2257</p> <p>63.5 Hall‐Effect and Zero‐Flux Transducers, 2258</p> <p>63.5.1 The Hall Effect, 2258</p> <p>63.5.2 Open‐Loop Hall‐Effect Transducers, 2259</p> <p>63.5.3 Closed‐Loop Hall‐Effect Transducers, 2259</p> <p>63.5.4 Zero‐Flux Transducers, 2262</p> <p>63.6 Air‐Core Current Transducers: Rogowski Coils, 2262</p> <p>63.7 Optical Current and Voltage Transducers, 2267</p> <p>63.7.1 Optical Current Transducers, 2268</p> <p>63.7.2 Optical Voltage Transducer, 2271</p> <p>63.7.3 Applications of OCTs and OVTs, 2272</p> <p>References and Further Reading, 2273</p> <p><b>64 Electric Power and Energy Measurement 2275<br /></b><i>Alessandro Ferrero and Marco Faifer</i></p> <p>64.1 Introduction, 2275</p> <p>64.2 Power and Energy in Electric Circuits, 2276</p> <p>64.2.1 DC Circuits, 2276</p> <p>64.2.2 AC Circuits, 2277</p> <p>64.3 Measurement Methods, 2282</p> <p>64.3.1 DC Conditions, 2282</p> <p>64.3.2 AC Conditions, 2285</p> <p>64.4 Wattmeters, 2288</p> <p>64.4.1 Architecture, 2288</p> <p>64.4.2 Signal Processing, 2289</p> <p>64.5 Transducers, 2290</p> <p>64.5.1 Current Transformers, 2291</p> <p>64.5.2 Hall‐Effect Sensors, 2296</p> <p>64.5.3 Rogowski Coils, 2297</p> <p>64.5.4 Voltage Transformers, 2299</p> <p>64.5.5 Electronic Transformers, 2302</p> <p>64.6 Power Quality Measurements, 2303</p> <p>References, 2305</p> <p><b>Part Viii CHEMISTRY 2307</b></p> <p><b>65 An Overview of Chemometrics for the Engineering and Measurement Sciences 2309<br /></b><i>Brad Swarbrick and Frank Westad</i></p> <p>65.1 Introduction: The Past and Present of Chemometrics, 2309</p> <p>65.2 Representative Data, 2311</p> <p>65.2.1 A Suggested Workflow for Developing Chemometric Models, 2313</p> <p>65.2.2 Accuracy and Precision, 2313</p> <p>65.2.3 Summary of Representative Data Principles, 2316</p> <p>65.3 Exploratory Data Analysis, 2317</p> <p>65.3.1 Univariate and Multivariate Analysis, 2317</p> <p>65.3.2 Cluster Analysis, 2318</p> <p>65.3.3 Principal Component Analysis, 2323</p> <p>65.4 Multivariate Regression, 2352</p> <p>65.4.1 General Principles of Univariate and Multivariate Regression, 2352</p> <p>65.4.2 Multiple Linear Regression, 2354</p> <p>65.4.3 Principal Component Regression, 2355</p> <p>65.4.4 Partial Least Squares Regression, 2356</p> <p>65.5 Multivariate Classification, 2369</p> <p>65.5.1 Linear Discriminant Analysis, 2370</p> <p>65.5.2 Soft Independent Modeling of Class Analogy, 2372</p> <p>65.5.3 Partial Least Squares Discriminant Analysis, 2381</p> <p>65.5.4 Support Vector Machine Classification, 2383</p> <p>65.6 Techniques for Validating Chemometric Models, 2385</p> <p>65.6.1 Test Set Validation, 2386</p> <p>65.6.2 Cross Validation, 2388</p> <p>65.7 An Introduction to Mspc, 2389</p> <p>65.7.1 Multivariate Projection, 2389</p> <p>65.7.2 Hotelling’s T2 Control Chart, 2390</p> <p>65.7.3 Q‐Residuals, 2391</p> <p>65.7.4 Influence Plot, 2391</p> <p>65.7.5 Continuous versus Batch Monitoring, 2392</p> <p>65.7.6 Implementing MSPC in Practice, 2394</p> <p>65.8 Terminology, 2397</p> <p>65.9 Chapter Summary, 2401</p> <p>References, 2404</p> <p><b>66 Liquid Chromatography 2409<br /></b><i>Zhao Li, Sandya Beeram, Cong Bi, Ellis Kaufmann, Ryan Matsuda, Maria Podariu, Elliott Rodriguez, Xiwei Zheng, and David S. Hage</i></p> <p>66.1 Introduction, 2409</p> <p>66.2 Support Materials in Lc, 2412</p> <p>66.3 Role of the Mobile Phase in Lc, 2413</p> <p>66.4 Adsorption Chromatography, 2414</p> <p>66.5 Partition Chromatography, 2415</p> <p>66.6 Ion‐Exchange Chromatography, 2417</p> <p>66.7 Size‐Exclusion Chromatography, 2419</p> <p>66.8 Affinity Chromatography, 2421</p> <p>66.9 Detectors for Liquid Chromatography, 2423</p> <p>66.10 Other Components of Lc Systems, 2426</p> <p>Acknowledgements, 2427</p> <p>References, 2427</p> <p><b>67 Mass Spectroscopy Measurements of Nitrotyrosine‐Containing Proteins 2431<br /></b><i>Xianquan Zhan and Dominic M. Desiderio</i></p> <p>67.1 Introduction, 2431</p> <p>67.1.1 Formation, Chemical Properties, and Related Nomenclature of Tyrosine Nitration, 2431</p> <p>67.1.2 Biological Roles of Tyrosine Nitration in a Protein, 2432</p> <p>67.1.3 Challenge and Strategies to Identify a Nitroprotein with Mass Spectrometry, 2432</p> <p>67.1.4 Biological Significance Measurement of Nitroproteins, 2434</p> <p>67.2 Mass Spectrometric Characteristics of Nitropeptides, 2434</p> <p>67.2.1 MALDI‐MS Spectral Characteristics of a Nitropeptide, 2434</p> <p>67.2.2 ESI‐MS Spectral Characteristics of a Nitropeptide, 2437</p> <p>67.2.3 Optimum Collision Energy for Ion Fragmentation and Detection Sensitivity for a Nitropeptide, 2438</p> <p>67.2.4 MS/MS Spectral Characteristics of a Nitropeptide under Different Ion‐Fragmentation Models, 2440</p> <p>67.3 Ms Measurement of in vitro Synthetic Nitroproteins, 2443</p> <p>67.3.1 Importance of Measurement of In Vitro Synthetic Nitroproteins, 2443</p> <p>67.3.2 Commonly Used In Vitro Nitroproteins and Their Preparation, 2443</p> <p>67.3.3 Methods Used to Measure in Vitro Synthetic Nitroproteins, 2444</p> <p>67.4 Ms Measurement of In Vivo Nitroproteins, 2446</p> <p>67.4.1 Importance of Isolation and Enrichment of In Vivo Nitroprotein/Nitropeptide Prior to MS Analysis, 2446</p> <p>67.4.2 Methods Used to Isolate and Enrich In Vivo Nitroproteins/Nitropeptides, 2446</p> <p>67.5 Ms Measurement of In Vivo Nitroproteins in Different Pathological Conditions, 2449</p> <p>67.6 Biological Function Measurement of Nitroproteins, 2456</p> <p>67.6.1 Literature Data‐Based Rationalization of Biological Functions, 2457</p> <p>67.6.2 Protein Domain and Motif Analyses, 2459</p> <p>67.6.3 Systems Pathway Analysis, 2459</p> <p>67.6.4 Structural Biology Analysis, 2460</p> <p>67.7 Pitfalls of Nitroprotein Measurement, 2462</p> <p>67.8 Conclusions, 2463</p> <p>Nomenclature, 2464</p> <p>Acknowledgments, 2465</p> <p>References, 2465</p> <p><b>68 Fluorescence Spectroscopy 2475<br /></b><i>Yevgen Povrozin and Beniamino Barbieri</i></p> <p>68.1 Observables Measured in Fluorescence, 2476</p> <p>68.2 The Perrin–Jabłoński Diagram, 2476</p> <p>68.3 Instrumentation, 2479</p> <p>68.3.1 Light Source, 2480</p> <p>68.3.2 Monochromator, 2480</p> <p>68.3.3 Light Detectors, 2481</p> <p>68.3.4 Instrumentation for Steady‐State Fluorescence: Analog and Photon Counting, 2483</p> <p>68.3.5 The Measurement of Decay Times: Frequency‐Domain and Time‐Domain Techniques, 2484</p> <p>68.4 Fluorophores, 2486</p> <p>68.5 Measurements, 2487</p> <p>68.5.1 Excitation Spectrum, 2487</p> <p>68.5.2 Emission Spectrum, 2488</p> <p>68.5.3 Decay Times of Fluorescence, 2490</p> <p>68.5.4 Quantum Yield, 2492</p> <p>68.5.5 Anisotropy and Polarization, 2492</p> <p>68.6 Conclusions, 2498</p> <p>References, 2498</p> <p>Further Reading, 2498</p> <p><b>69 X‐Ray Absorption Spectroscopy 2499<br /></b><i>Grant Bunker</i></p> <p>69.1 Introduction, 2499</p> <p>69.2 Basic Physics of X‐Rays, 2499</p> <p>69.2.1 Units, 2500</p> <p>69.2.2 X‐Ray Photons and Their Properties, 2500</p> <p>69.2.3 X‐Ray Scattering and Diffraction, 2501</p> <p>69.2.4 X‐Ray Absorption, 2502</p> <p>69.2.5 Cross Sections and Absorption Edges, 2503</p> <p>69.3 Experimental Requirements, 2505</p> <p>69.4 Measurement Modes, 2507</p> <p>69.5 Sources, 2507</p> <p>69.5.1 Laboratory Sources, 2507</p> <p>69.5.2 Synchrotron Radiation Sources, 2508</p> <p>69.5.3 Bend Magnet Radiation, 2509</p> <p>69.5.4 Insertion Devices: Wigglers and Undulators, 2509</p> <p>69.6 Beamlines, 2512</p> <p>69.6.1 Instrument Control and Scanning Modes, 2512</p> <p>69.6.2 Double‐Crystal Monochromators, 2513</p> <p>69.6.3 Focusing Conditions, 2514</p> <p>69.6.4 X‐Ray Lenses and Mirrors, 2515</p> <p>69.6.5 Harmonics, 2516</p> <p>69.7 Detectors, 2518</p> <p>69.7.1 Ionization Chambers and PIN Diodes, 2519</p> <p>69.7.2 Solid‐State Detectors, SDDs, and APDs, 2520</p> <p>69.8 Sample Preparation and Detection Modes, 2521</p> <p>69.8.1 Transmission Mode, 2521</p> <p>69.8.2 Fluorescence Mode, 2521</p> <p>69.8.3 HALO, 2522</p> <p>69.8.4 Sample Geometry and Background Rejection, 2523</p> <p>69.8.5 Oriented Samples, 2525</p> <p>69.9 Absolute Measurements, 2526</p> <p>References, 2526</p> <p><b>70 Nuclear Magnetic Resonance (NMR) Spectroscopy 2529<br /></b><i>Kenneth R. Metz</i></p> <p>70.1 Introduction, 2529</p> <p>70.2 Historical Review, 2530</p> <p>70.3 Basic Principles of Spin Magnetization, 2531</p> <p>70.4 Exciting the NMR Signal, 2534</p> <p>70.5 Detecting the NMR Signal, 2538</p> <p>70.6 Computing the NMR Spectrum, 2540</p> <p>70.7 NMR Instrumentation, 2542</p> <p>70.8 The Basic Pulsed FTNMR Experiment, 2550</p> <p>70.9 Characteristics of NMR Spectra, 2551</p> <p>70.9.1 The Chemical Shift, 2552</p> <p>70.9.2 Spin–Spin Coupling, 2557</p> <p>70.10 NMR Relaxation Effects, 2563</p> <p>70.10.1 Spin–Lattice Relaxation, 2563</p> <p>70.10.2 Spin–Spin Relaxation, 2565</p> <p>70.10.3 Quantitative Analysis by NMR, 2568</p> <p>70.11 Dynamic Phenomena in NMR, 2568</p> <p>70.12 Multidimensional NMR, 2573</p> <p>70.13 Conclusion, 2580</p> <p>References, 2580</p> <p><b>71 Near‐Infrared Spectroscopy and Its Role in Scientific and Engineering Applications 2583<br /></b><i>Brad Swarbrick</i></p> <p>71.1 Introduction to Near‐Infrared Spectroscopy and Historical Perspectives, 2583</p> <p>71.1.1 A Brief Overview of Near‐Infrared Spectroscopy and Its Usage, 2583</p> <p>71.1.2 A Short History of NIR, 2585</p> <p>71.2 The Theory behind Nir Spectroscopy, 2588</p> <p>71.2.1 IR Radiation, 2588</p> <p>71.2.2 The Mechanism of Interaction of NIR Radiation with Matter, 2588</p> <p>71.2.3 Absorbance Spectra, 2591</p> <p>71.3 Instrumentation for Nir Spectroscopy, 2595</p> <p>71.3.1 General Configuration of Instrumentation, 2595</p> <p>71.3.2 Filter‐Based Instruments, 2597</p> <p>71.3.3 Holographic Grating‐Based Instruments, 2598</p> <p>71.3.4 Stationary Spectrographic Instruments, 2600</p> <p>71.3.5 Fourier Transform Instruments, 2601</p> <p>71.3.6 Acoustooptical Tunable Filter Instruments, 2603</p> <p>71.3.7 Microelectromechanical Spectrometers, 2604</p> <p>71.3.8 Linear Variable Filter Instruments, 2605</p> <p>71.3.9 A Brief Overview of Detectors Used for NIR Spectroscopy, 2606</p> <p>71.3.10 Summary, 2608</p> <p>71.4 Modes of Spectral Collection and Sample Preparation in Nir Spectroscopy, 2609</p> <p>71.4.1 Transmission Mode, 2609</p> <p>71.4.2 Diffuse Reflectance, 2611</p> <p>71.4.3 Sample Preparation, 2613</p> <p>71.4.4 Fiber Optic Probes, 2617</p> <p>71.4.5 Summary of Sampling Methods, 2619</p> <p>71.5 Preprocessing of Nir Spectra for Chemometric Analysis, 2620</p> <p>71.5.1 Preprocessing of NIR Spectra, 2621</p> <p>71.5.2 Minimizing Additive Effects, 2621</p> <p>71.5.3 Minimizing Multiplicative Effects, 2627</p> <p>71.5.4 Preprocessing Summary, 2633</p> <p>71.6 A Brief Overview of Applications of Nir Spectroscopy, 2633</p> <p>71.6.1 Agricultural Applications, 2634</p> <p>71.6.2 Pharmaceutical/Biopharmaceutical Applications, 2636</p> <p>71.6.3 Applications in the Petrochemical and Refining Sectors, 2644</p> <p>71.6.4 Applications in the Food and Beverage Industries, 2646</p> <p>71.7 Summary and Future Perspectives, 2647</p> <p>71.8 Terminology, 2648</p> <p>References, 2652</p> <p><b>72 Nanomaterials Properties 2657<br /></b><i>Paul J. Simmonds</i></p> <p>72.1 Introduction, 2657</p> <p>72.2 The Rise of Nanomaterials, 2660</p> <p>72.3 Nanomaterial Properties Resulting from High Surface‐Area‐to‐Volume Ratio, 2661</p> <p>72.3.1 The Importance of Surfaces in Nanomaterials, 2661</p> <p>72.3.2 Electrostatic and Van der Waals Forces, 2662</p> <p>72.3.3 Color, 2663</p> <p>72.3.4 Melting Point, 2663</p> <p>72.3.5 Magnetism, 2664</p> <p>72.3.6 Hydrophobicity and Surface Energetics, 2664</p> <p>72.3.7 Nanofluidics, 2666</p> <p>72.3.8 Nanoporosity, 2668</p> <p>72.3.9 Nanomembranes, 2669</p> <p>72.3.10 Nanocatalysis, 2670</p> <p>72.3.11 Further Increasing the SAV Ratio, 2671</p> <p>72.3.12 Nanopillars, 2672</p> <p>72.3.13 Nanomaterial Functionalization, 2673</p> <p>72.3.14 Other Applications for High SAV Ratio Nanomaterials, 2674</p> <p>72.4 Nanomaterial Properties Resulting from Quantum Confinement, 2674</p> <p>72.4.1 Quantum Well Nanostructures, 2677</p> <p>72.4.2 Quantum Wire Nanostructures, 2682</p> <p>72.4.3 Quantum Dot Nanostructures, 2691</p> <p>72.5 Conclusions, 2695</p> <p>References, 2695</p> <p><b>73 Chemical Sensing 2707<br /></b><i>W. Rudolf Seitz</i></p> <p>73.1 Introduction, 2707</p> <p>73.2 Electrical Methods, 2709</p> <p>73.2.1 Potentiometry, 2709</p> <p>73.2.2 Voltammetry, 2713</p> <p>73.2.3 Chemiresistors, 2715</p> <p>73.2.4 Field Effect Transistors, 2716</p> <p>73.3 Optical Methods, 2717</p> <p>73.3.1 In situ Optical Measurements, 2717</p> <p>73.3.2 Raman Spectroscopy, 2719</p> <p>73.3.3 Indicator‐Based Optical Sensors, 2721</p> <p>73.4 Mass Sensors, 2722</p> <p>73.5 Sensor Arrays (Electronic Nose), 2724</p> <p>References, 2724</p> <p>Index 2727</p>
<p><strong>Myer Kutz</strong> holds engineering degrees from RPI and MIT. He was Vice President and General Manager of Wiley's STM division and has consulted and authored for most of the major professional and technical publishing houses. He is the author of 7 books and the editor of more than 20 handbooks.
<p><b>A multidisciplinary reference of engineering measurement tools, techniques, and applications</b></p> <p>"When you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely in your thoughts advanced to the stage of science." <i>— Lord Kelvin</i></p> <p>Measurement is at the heart of any engineering and scientific discipline and job function. Whether engineers and scientists are attempting to state requirements quantitatively and demonstrate compliance; to track progress and predict results; or to analyze costs and benefits, they must use the right tools and techniques to produce meaningful data.</p> <p>The <i>Handbook of Measurement in Science and Engineering</i> is the most comprehensive, up-to-date reference set on engineering and scientific measurements—beyond anything on the market today. Encyclopedic in scope, <i>Volume 3</i> covers measurements in physics, electrical engineering and chemistry:</p> <ul> <li>Laser Measurement Techniques</li> <li>Magnetic Force Images using Capacitive Coupling Effect</li> <li>Scanning Tunneling Microscopy</li> <li>Measurement of Light and Color</li> <li>The Detection and Measurement of Ionizing Radiation</li> <li>Measuring Time and Comparing Clocks</li> <li>Laboratory-Based Gravity Measurement</li> <li>Cryogenic Measurements</li> <li>Temperature-Dependent Fluorescence Measurements</li> <li>Nanomaterials Properties</li> <li>Voltage and Current Transducers for Power Systems</li> <li>Electric Power and Energy Measurement</li> <li>Chemometrics for the Engineering and Measurement Sciences</li> <li>Liquid Chromatography</li> <li>Mass Spectroscopy Measurements of Nitrotyrosine-Containing Proteins</li> <li>Fluorescence Spectroscopy</li> <li>X-Ray Absorption Spectroscopy</li> <li>Nuclear Magnetic Resonance (NMR) Spectroscopy</li> <li>Near Infrared (NIR) Spectroscopy</li> <li>Chemical Sensing</li> </ul> <p>Vital for engineers, scientists, and technical managers in industry and government, <i>Handbook of Measurement in Science and Engineering</i> will also prove ideal for academics and researchers at universities and laboratories.</p>

Diese Produkte könnten Sie auch interessieren:

Secrets of the Old One
Secrets of the Old One
von: Jeremy Bernstein
PDF ebook
26,74 €
Field Emission in Vacuum Microelectronics
Field Emission in Vacuum Microelectronics
von: George N. Fursey
PDF ebook
96,29 €
Panofsky on Physics, Politics, and Peace
Panofsky on Physics, Politics, and Peace
von: Wolfgang K.H. Panofsky, Jean Deken
PDF ebook
53,49 €